查理石的晶体结构--层状双氢氧化物中首个 11 × 11 Å 超结构网格的实例

IF 2.8 3区 地球科学 Q2 MINERALOGY
Elena S. Zhitova, Andrey A. Zolotarev, Anatoly V. Kasatkin, Rezeda M. Sheveleva, Sergey V. Krivovichev, Igor V. Pekov, Vladimir N. Bocharov
{"title":"查理石的晶体结构--层状双氢氧化物中首个 11 × 11 Å 超结构网格的实例","authors":"Elena S. Zhitova, Andrey A. Zolotarev, Anatoly V. Kasatkin, Rezeda M. Sheveleva, Sergey V. Krivovichev, Igor V. Pekov, Vladimir N. Bocharov","doi":"10.1180/mgm.2024.11","DOIUrl":null,"url":null,"abstract":"<p>Charmarite, Mn<span>4</span>Al<span>2</span>(OH)<span>12</span>CO<span>3</span>⋅3H<span>2</span>O, is a hydrotalcite supergroup member (or layered double hydroxide, LDH) with a previously unknown crystal structure and a Mn<span>2+</span>-analogue of quintinite (commonly erroneously reported as ‘2:1 hydrotalcite’). The single-crystal X-ray diffraction (XRD) data were obtained from the specimen from Mont Saint-Hilaire, Québec, Canada and are best processed in the space group <span>P</span><span><span><span data-mathjax-type=\"texmath\"><span>$\\bar{3}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline1.png\"/></span></span>, <span>a</span> = 10.9630(4), <span>c</span> = 15.0732(5) Å and <span>V</span> = 1568.89(12) Å<span>3</span>. The crystal structure has been solved by direct methods and refined to <span>R</span><span>1</span> = 0.0750 for 3801 unique reflections with <span>F</span><span>o</span> &gt; 2σ(<span>F</span><span>o</span>). The charmarite structure has long-range periodicity in the <span>xy</span> plane due to <span><span><span data-mathjax-type=\"texmath\"><span>$2\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline2.png\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\"texmath\"><span>$2\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline3.png\"/></span></span><span>a</span>’ scheme (or 11 × 11 Å) determined for LDHs for the first time (where <span>a</span>’ is a subcell parameter ≈ 3.2 Å). This periodicity is produced by the combination of two superstructures formed by: (1) Mn<span>2+</span> and Al<span>3+</span> ordering in the metal-hydroxide layers [Mn<span>4</span>Al<span>2</span>(OH)<span>12</span>]<span>2+</span> according to the <span><span><span data-mathjax-type=\"texmath\"><span>$\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline4.png\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\"texmath\"><span>$\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline5.png\"/></span></span><span>a</span>’ pattern and (2) the (CO<span>3</span>)<span>2–</span> ordering according to the 2<span>a</span>’ × 2<span>a</span>’ pattern in the [CO<span>3</span>(H<span>2</span>O)<span>3</span>]<span>2–</span> interlayer sheet in order to avoid close contacts between adjacent carbonate groups. The <span><span><span data-mathjax-type=\"texmath\"><span>$2\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline6.png\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\"texmath\"><span>$2\\sqrt 3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline7.png\"/></span></span><span>a</span>’ superstructure is an example of the adaptability of the components of the interlayer space to the charge distribution of the metal-hydroxyl layers. The Mn<span>2+</span> and Al<span>3+</span> cations have a large difference in size, which apparently leads to the considerable degree of their order as di- and trivalent cations resulting in a higher degree of statistical order of the interlayer components. Both powder and single-crystal XRD data show that the samples studied belong to the hexagonal branch of two-layer polytypes (2<span>T</span> or 2<span>H</span>) with <span>d</span><span>00<span>n</span></span> ≈ 7.57 Å. The chemical composition of the samples studied is close to the ideal formula. The Raman spectrum of charmarite is reported and the band assignment is provided.</p>","PeriodicalId":18618,"journal":{"name":"Mineralogical Magazine","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The crystal structure of charmarite – the first case of a 11 × 11 Å superstructure mesh in layered double hydroxides\",\"authors\":\"Elena S. Zhitova, Andrey A. Zolotarev, Anatoly V. Kasatkin, Rezeda M. Sheveleva, Sergey V. Krivovichev, Igor V. Pekov, Vladimir N. Bocharov\",\"doi\":\"10.1180/mgm.2024.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Charmarite, Mn<span>4</span>Al<span>2</span>(OH)<span>12</span>CO<span>3</span>⋅3H<span>2</span>O, is a hydrotalcite supergroup member (or layered double hydroxide, LDH) with a previously unknown crystal structure and a Mn<span>2+</span>-analogue of quintinite (commonly erroneously reported as ‘2:1 hydrotalcite’). The single-crystal X-ray diffraction (XRD) data were obtained from the specimen from Mont Saint-Hilaire, Québec, Canada and are best processed in the space group <span>P</span><span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\bar{3}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline1.png\\\"/></span></span>, <span>a</span> = 10.9630(4), <span>c</span> = 15.0732(5) Å and <span>V</span> = 1568.89(12) Å<span>3</span>. The crystal structure has been solved by direct methods and refined to <span>R</span><span>1</span> = 0.0750 for 3801 unique reflections with <span>F</span><span>o</span> &gt; 2σ(<span>F</span><span>o</span>). The charmarite structure has long-range periodicity in the <span>xy</span> plane due to <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$2\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline2.png\\\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$2\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline3.png\\\"/></span></span><span>a</span>’ scheme (or 11 × 11 Å) determined for LDHs for the first time (where <span>a</span>’ is a subcell parameter ≈ 3.2 Å). This periodicity is produced by the combination of two superstructures formed by: (1) Mn<span>2+</span> and Al<span>3+</span> ordering in the metal-hydroxide layers [Mn<span>4</span>Al<span>2</span>(OH)<span>12</span>]<span>2+</span> according to the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline4.png\\\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline5.png\\\"/></span></span><span>a</span>’ pattern and (2) the (CO<span>3</span>)<span>2–</span> ordering according to the 2<span>a</span>’ × 2<span>a</span>’ pattern in the [CO<span>3</span>(H<span>2</span>O)<span>3</span>]<span>2–</span> interlayer sheet in order to avoid close contacts between adjacent carbonate groups. The <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$2\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline6.png\\\"/></span></span><span>a</span>’ × <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$2\\\\sqrt 3$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240412100051135-0894:S0026461X24000112:S0026461X24000112_inline7.png\\\"/></span></span><span>a</span>’ superstructure is an example of the adaptability of the components of the interlayer space to the charge distribution of the metal-hydroxyl layers. The Mn<span>2+</span> and Al<span>3+</span> cations have a large difference in size, which apparently leads to the considerable degree of their order as di- and trivalent cations resulting in a higher degree of statistical order of the interlayer components. Both powder and single-crystal XRD data show that the samples studied belong to the hexagonal branch of two-layer polytypes (2<span>T</span> or 2<span>H</span>) with <span>d</span><span>00<span>n</span></span> ≈ 7.57 Å. The chemical composition of the samples studied is close to the ideal formula. The Raman spectrum of charmarite is reported and the band assignment is provided.</p>\",\"PeriodicalId\":18618,\"journal\":{\"name\":\"Mineralogical Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralogical Magazine\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/mgm.2024.11\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MINERALOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralogical Magazine","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/mgm.2024.11","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MINERALOGY","Score":null,"Total":0}
引用次数: 0

摘要

Charmarite(Mn4Al2(OH)12CO3⋅3H2O)是一种水滑石超群成员(或层状双氢氧化物,LDH),其晶体结构以前不为人知,是一种 Mn2+-类似物(通常被错误地报道为 "2:1 水滑石")。单晶 X 射线衍射(XRD)数据取自加拿大魁北克省圣希莱尔山(Mont Saint-Hilaire)的标本,最佳空间群为 P$\bar{3}$,a = 10.9630(4),c = 15.0732(5) Å,V = 1568.89(12) Å3。该晶体结构已通过直接方法求解,并在 3801 次独特反射中精制为 R1 = 0.0750,Fo > 2σ(Fo)。由于首次为 LDHs 确定了 $2\sqrt 3$a' × $2\sqrt 3$a' 方案(或 11 × 11 Å)(其中 a' 为子晶胞参数 ≈ 3.2 Å),霞石结构在 xy 平面上具有长程周期性。这种周期性是由以下两种超结构组合而成的:(1) 金属氢氧化物层 [Mn4Al2(OH)12]2+ 中的 Mn2+ 和 Al3+ 按照 $\sqrt 3$a' × $\sqrt 3$a' 模式排序;以及 (2) [CO3(H2O)3]2- 层间薄片中的 (CO3)2- 按照 2a' × 2a' 模式排序,以避免相邻碳酸盐基团之间的紧密接触。2sqrt 3$a' × 2sqrt 3$a' 的上层结构是层间空间各组分适应金属羟基层电荷分布的一个例子。Mn2+ 和 Al3+ 阳离子的尺寸差异很大,这显然导致它们作为二价和三价阳离子的有序程度相当高,从而导致层间成分的统计有序程度较高。粉末和单晶 XRD 数据都表明,所研究的样品属于双层多晶型(2T 或 2H)的六方分支,d00n ≈ 7.57 Å。报告中还给出了查理石的拉曼光谱和波段赋值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The crystal structure of charmarite – the first case of a 11 × 11 Å superstructure mesh in layered double hydroxides

Charmarite, Mn4Al2(OH)12CO3⋅3H2O, is a hydrotalcite supergroup member (or layered double hydroxide, LDH) with a previously unknown crystal structure and a Mn2+-analogue of quintinite (commonly erroneously reported as ‘2:1 hydrotalcite’). The single-crystal X-ray diffraction (XRD) data were obtained from the specimen from Mont Saint-Hilaire, Québec, Canada and are best processed in the space group P$\bar{3}$, a = 10.9630(4), c = 15.0732(5) Å and V = 1568.89(12) Å3. The crystal structure has been solved by direct methods and refined to R1 = 0.0750 for 3801 unique reflections with Fo > 2σ(Fo). The charmarite structure has long-range periodicity in the xy plane due to $2\sqrt 3$a’ × $2\sqrt 3$a’ scheme (or 11 × 11 Å) determined for LDHs for the first time (where a’ is a subcell parameter ≈ 3.2 Å). This periodicity is produced by the combination of two superstructures formed by: (1) Mn2+ and Al3+ ordering in the metal-hydroxide layers [Mn4Al2(OH)12]2+ according to the $\sqrt 3$a’ × $\sqrt 3$a’ pattern and (2) the (CO3)2– ordering according to the 2a’ × 2a’ pattern in the [CO3(H2O)3]2– interlayer sheet in order to avoid close contacts between adjacent carbonate groups. The $2\sqrt 3$a’ × $2\sqrt 3$a’ superstructure is an example of the adaptability of the components of the interlayer space to the charge distribution of the metal-hydroxyl layers. The Mn2+ and Al3+ cations have a large difference in size, which apparently leads to the considerable degree of their order as di- and trivalent cations resulting in a higher degree of statistical order of the interlayer components. Both powder and single-crystal XRD data show that the samples studied belong to the hexagonal branch of two-layer polytypes (2T or 2H) with d00n ≈ 7.57 Å. The chemical composition of the samples studied is close to the ideal formula. The Raman spectrum of charmarite is reported and the band assignment is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralogical Magazine
Mineralogical Magazine 地学-矿物学
CiteScore
4.00
自引率
25.90%
发文量
104
审稿时长
6-12 weeks
期刊介绍: Mineralogical Magazine is an international journal of mineral sciences which covers the fields of mineralogy, crystallography, geochemistry, petrology, environmental geology and economic geology. The journal has been published continuously since the founding of the Mineralogical Society of Great Britain and Ireland in 1876 and is a leading journal in its field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信