利用高斯混合物模型和图神经网络从测光数据中识别热亚矮星

IF 2.2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Wei Liu, Yude Bu, Xiaoming Kong, Zhenping Yi, Meng Liu
{"title":"利用高斯混合物模型和图神经网络从测光数据中识别热亚矮星","authors":"Wei Liu, Yude Bu, Xiaoming Kong, Zhenping Yi, Meng Liu","doi":"10.1093/pasj/psae013","DOIUrl":null,"url":null,"abstract":"Hot subdwarf stars are very important for understanding stellar evolution, stellar astrophysics, and binary star systems. Identifying more such stars can help us better understand their statistical distribution, properties, and evolution. In this paper, we present a new method to search for hot subdwarf stars in photometric data (BP, RP, G, g, r, i, z, y) using a machine-learning algorithm, a graph neural network, and a Gaussian mixture model. We use a Gaussian mixture model and Markov distance to build the graph structure, and on the graph structure we use a graph neural network to identify hot subdwarf stars from a dataset containing 31838 stars, with the recall, precision, and F1 score maximized on the original, weight, and synthetic minority oversampling technique datasets. Finally, to validate the model, we selected about 2116 hot subdwarf candidates from the Gaia Data Release 3 database and compared them with the studies by Culpan et al. (2022, A&A, 662, A40) and Geier et al. (2019, A&A, 621, A38).","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"147 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying hot subdwarf stars from photometric data using a Gaussian mixture model and graph neural network\",\"authors\":\"Wei Liu, Yude Bu, Xiaoming Kong, Zhenping Yi, Meng Liu\",\"doi\":\"10.1093/pasj/psae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hot subdwarf stars are very important for understanding stellar evolution, stellar astrophysics, and binary star systems. Identifying more such stars can help us better understand their statistical distribution, properties, and evolution. In this paper, we present a new method to search for hot subdwarf stars in photometric data (BP, RP, G, g, r, i, z, y) using a machine-learning algorithm, a graph neural network, and a Gaussian mixture model. We use a Gaussian mixture model and Markov distance to build the graph structure, and on the graph structure we use a graph neural network to identify hot subdwarf stars from a dataset containing 31838 stars, with the recall, precision, and F1 score maximized on the original, weight, and synthetic minority oversampling technique datasets. Finally, to validate the model, we selected about 2116 hot subdwarf candidates from the Gaia Data Release 3 database and compared them with the studies by Culpan et al. (2022, A&A, 662, A40) and Geier et al. (2019, A&A, 621, A38).\",\"PeriodicalId\":20733,\"journal\":{\"name\":\"Publications of the Astronomical Society of Japan\",\"volume\":\"147 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/pasj/psae013\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psae013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

热亚矮星对于了解恒星演化、恒星天体物理学和双星系统非常重要。发现更多这样的恒星可以帮助我们更好地了解它们的统计分布、性质和演化。本文提出了一种利用机器学习算法、图神经网络和高斯混合物模型在测光数据(BP、RP、G、g、r、i、z、y)中搜索热亚矮星的新方法。我们使用高斯混合物模型和马尔科夫距离建立图结构,在图结构上使用图神经网络从包含31838颗恒星的数据集中识别出热亚矮星,在原始数据集、加权数据集和合成少数超采样技术数据集上,召回率、精确度和F1得分都达到了最大值。最后,为了验证该模型,我们从盖亚数据第3版数据库中选取了约2116颗热亚矮星候选星,并将它们与Culpan等人(2022,A&A,662,A40)和Geier等人(2019,A&A,621,A38)的研究进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying hot subdwarf stars from photometric data using a Gaussian mixture model and graph neural network
Hot subdwarf stars are very important for understanding stellar evolution, stellar astrophysics, and binary star systems. Identifying more such stars can help us better understand their statistical distribution, properties, and evolution. In this paper, we present a new method to search for hot subdwarf stars in photometric data (BP, RP, G, g, r, i, z, y) using a machine-learning algorithm, a graph neural network, and a Gaussian mixture model. We use a Gaussian mixture model and Markov distance to build the graph structure, and on the graph structure we use a graph neural network to identify hot subdwarf stars from a dataset containing 31838 stars, with the recall, precision, and F1 score maximized on the original, weight, and synthetic minority oversampling technique datasets. Finally, to validate the model, we selected about 2116 hot subdwarf candidates from the Gaia Data Release 3 database and compared them with the studies by Culpan et al. (2022, A&A, 662, A40) and Geier et al. (2019, A&A, 621, A38).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of Japan
Publications of the Astronomical Society of Japan 地学天文-天文与天体物理
CiteScore
4.10
自引率
13.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信