片线性莫里斯-勒卡模型的动力学:分岔和尖峰添加

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
J. Penalva, M. Desroches, A. E. Teruel, C. Vich
{"title":"片线性莫里斯-勒卡模型的动力学:分岔和尖峰添加","authors":"J. Penalva, M. Desroches, A. E. Teruel, C. Vich","doi":"10.1007/s00332-024-10029-3","DOIUrl":null,"url":null,"abstract":"<p>Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Piecewise-Linear Morris–Lecar Model: Bifurcations and Spike Adding\",\"authors\":\"J. Penalva, M. Desroches, A. E. Teruel, C. Vich\",\"doi\":\"10.1007/s00332-024-10029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10029-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

多时间尺度系统通常显示出复杂的动态,但具有极大的数学意义,非常适合模拟猝发振荡等现实世界的现象。在本研究中,我们构建了莫里斯-勒卡神经元模型的片线性版本,称为 PWL-ML,并深入分析了其与三个主要参数相关的分叉结构。然后,我们以 PWL-ML 中存在的同室连线为重点,研究了在原始系统中增加一个参数的慢动力学时,通过该连线的慢通过现象,从而为这种慢通过现象建立了一个简化框架。结果表明,我们的模型表现出与其平滑模型相同的行为。特别是,我们识别出了尖峰添加转换中的部分卡线解。我们重点研究了单尖峰和双尖峰情况,并以比在光滑情况下更直接的方式证明了它们的存在。在此过程中,我们提出了片线性框架所特有的几种技术,并有可能为在更广泛的背景下证明动力学对象的存在提供新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamics of a Piecewise-Linear Morris–Lecar Model: Bifurcations and Spike Adding

Dynamics of a Piecewise-Linear Morris–Lecar Model: Bifurcations and Spike Adding

Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信