{"title":"片线性莫里斯-勒卡模型的动力学:分岔和尖峰添加","authors":"J. Penalva, M. Desroches, A. E. Teruel, C. Vich","doi":"10.1007/s00332-024-10029-3","DOIUrl":null,"url":null,"abstract":"<p>Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a Piecewise-Linear Morris–Lecar Model: Bifurcations and Spike Adding\",\"authors\":\"J. Penalva, M. Desroches, A. E. Teruel, C. Vich\",\"doi\":\"10.1007/s00332-024-10029-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10029-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10029-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dynamics of a Piecewise-Linear Morris–Lecar Model: Bifurcations and Spike Adding
Multiple-timescale systems often display intricate dynamics, yet of great mathematical interest and well suited to model real-world phenomena such as bursting oscillations. In the present work, we construct a piecewise-linear version of the Morris–Lecar neuron model, denoted PWL-ML, and we thoroughly analyse its bifurcation structure with respect to three main parameters. Then, focusing on the homoclinic connection present in our PWL-ML, we study the slow passage through this connection when augmenting the original system with a slow dynamics for one of the parameters, thereby establishing a simplified framework for this slow-passage phenomenon. Our results show that our model exhibits equivalent behaviours to its smooth counterpart. In particular, we identify canard solutions that are part of spike-adding transitions. Focusing on the one-spike and on the two-spike scenarios, we prove their existence in a more straightforward manner than in the smooth context. In doing so, we present several techniques that are specific to the piecewise-linear framework and with the potential to offer new tools for proving the existence of dynamical objects in a wider context.