算术试探性双曲晶格并非局部扩展残差有限

Pub Date : 2024-04-02 DOI:10.1093/imrn/rnae053
Nikolay Bogachev, Leone Slavich, Hongbin Sun
{"title":"算术试探性双曲晶格并非局部扩展残差有限","authors":"Nikolay Bogachev, Leone Slavich, Hongbin Sun","doi":"10.1093/imrn/rnae053","DOIUrl":null,"url":null,"abstract":"A group is LERF (locally extended residually finite) if all its finitely generated subgroups are separable. We prove that the trialitarian arithmetic lattices in $\\mathbf{PSO}_{7,1}(\\mathbb{R})$ are not LERF. This result, together with previous work by the third author, implies that no arithmetic lattice in $\\mathbf{PO}_{n,1}(\\mathbb{R})$, $n>3$, is LERF.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic Trialitarian Hyperbolic Lattices Are Not Locally Extended Residually Finite\",\"authors\":\"Nikolay Bogachev, Leone Slavich, Hongbin Sun\",\"doi\":\"10.1093/imrn/rnae053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group is LERF (locally extended residually finite) if all its finitely generated subgroups are separable. We prove that the trialitarian arithmetic lattices in $\\\\mathbf{PSO}_{7,1}(\\\\mathbb{R})$ are not LERF. This result, together with previous work by the third author, implies that no arithmetic lattice in $\\\\mathbf{PO}_{n,1}(\\\\mathbb{R})$, $n>3$, is LERF.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果一个群的所有有限生成子群都是可分离的,那么这个群就是 LERF(局部扩展残差有限群)。我们证明,$\mathbf{PSO}_{7,1}(\mathbb{R})$ 中的试算算术网格不是 LERF。这一结果与第三位作者之前的工作一起,意味着$mathbf{PO}_{n,1}(\mathbb{R})$中$n>3$的算术网格都不是LERF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Arithmetic Trialitarian Hyperbolic Lattices Are Not Locally Extended Residually Finite
A group is LERF (locally extended residually finite) if all its finitely generated subgroups are separable. We prove that the trialitarian arithmetic lattices in $\mathbf{PSO}_{7,1}(\mathbb{R})$ are not LERF. This result, together with previous work by the third author, implies that no arithmetic lattice in $\mathbf{PO}_{n,1}(\mathbb{R})$, $n>3$, is LERF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信