{"title":"级数为 m 的模数空间中密集轨道的极限分布 (m+1)- 空间中的离散子群","authors":"Michael Bersudsky, Hao Xing","doi":"10.1093/imrn/rnae046","DOIUrl":null,"url":null,"abstract":"We study the limiting distribution of dense orbits of a lattice subgroup $\\Gamma \\leq \\textrm{SL}(m+1,\\mathbb{R})$ acting on $H\\backslash \\textrm{SL}(m+1,\\mathbb{R})$, with respect to a filtration of growing norm balls. The novelty of our work is that the groups $H$ we consider have infinitely many non-trivial connected components. For a specific such $H$, the homogeneous space $H\\backslash G$ identifies with $X_{m,m+1}$, a moduli space of rank $m$-discrete subgroups in $\\mathbb{R}^{m+1}$. This study is motivated by the work of Shapira-Sargent who studied random walks on $X_{2,3}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limiting Distribution of Dense Orbits in a Moduli Space of Rank m Discrete Subgroups in (m+1)-Space\",\"authors\":\"Michael Bersudsky, Hao Xing\",\"doi\":\"10.1093/imrn/rnae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the limiting distribution of dense orbits of a lattice subgroup $\\\\Gamma \\\\leq \\\\textrm{SL}(m+1,\\\\mathbb{R})$ acting on $H\\\\backslash \\\\textrm{SL}(m+1,\\\\mathbb{R})$, with respect to a filtration of growing norm balls. The novelty of our work is that the groups $H$ we consider have infinitely many non-trivial connected components. For a specific such $H$, the homogeneous space $H\\\\backslash G$ identifies with $X_{m,m+1}$, a moduli space of rank $m$-discrete subgroups in $\\\\mathbb{R}^{m+1}$. This study is motivated by the work of Shapira-Sargent who studied random walks on $X_{2,3}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Limiting Distribution of Dense Orbits in a Moduli Space of Rank m Discrete Subgroups in (m+1)-Space
We study the limiting distribution of dense orbits of a lattice subgroup $\Gamma \leq \textrm{SL}(m+1,\mathbb{R})$ acting on $H\backslash \textrm{SL}(m+1,\mathbb{R})$, with respect to a filtration of growing norm balls. The novelty of our work is that the groups $H$ we consider have infinitely many non-trivial connected components. For a specific such $H$, the homogeneous space $H\backslash G$ identifies with $X_{m,m+1}$, a moduli space of rank $m$-discrete subgroups in $\mathbb{R}^{m+1}$. This study is motivated by the work of Shapira-Sargent who studied random walks on $X_{2,3}$.