{"title":"具有完整局部有限 F 表示类型的环的 F 模块形式主义","authors":"Eamon Quinlan-Gallego","doi":"10.1093/imrn/rnae054","DOIUrl":null,"url":null,"abstract":"We develop a formalism of unit $F$-modules in the style of Lyubeznik and Emerton-Kisin for rings that have finite $F$-representation type after localization and completion at every prime ideal. As applications, we show that if $R$ is such a ring then the iterated local cohomology modules $H^{n_{1}}_{I_{1}} \\circ \\cdots \\circ H^{n_{s}}_{I_{s}}(R)$ have finitely many associated primes, and that all local cohomology modules $H^{n}_{I}(R / gR)$ have closed support when $g$ is a nonzerodivisor on $R$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Formalism of F-modules for Rings with Complete Local Finite F-Representation Type\",\"authors\":\"Eamon Quinlan-Gallego\",\"doi\":\"10.1093/imrn/rnae054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a formalism of unit $F$-modules in the style of Lyubeznik and Emerton-Kisin for rings that have finite $F$-representation type after localization and completion at every prime ideal. As applications, we show that if $R$ is such a ring then the iterated local cohomology modules $H^{n_{1}}_{I_{1}} \\\\circ \\\\cdots \\\\circ H^{n_{s}}_{I_{s}}(R)$ have finitely many associated primes, and that all local cohomology modules $H^{n}_{I}(R / gR)$ have closed support when $g$ is a nonzerodivisor on $R$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Formalism of F-modules for Rings with Complete Local Finite F-Representation Type
We develop a formalism of unit $F$-modules in the style of Lyubeznik and Emerton-Kisin for rings that have finite $F$-representation type after localization and completion at every prime ideal. As applications, we show that if $R$ is such a ring then the iterated local cohomology modules $H^{n_{1}}_{I_{1}} \circ \cdots \circ H^{n_{s}}_{I_{s}}(R)$ have finitely many associated primes, and that all local cohomology modules $H^{n}_{I}(R / gR)$ have closed support when $g$ is a nonzerodivisor on $R$.