{"title":"椭圆系统的无穷分岔和解的多重性","authors":"Chunqiu Li, Guanyu Chen, Jintao Wang","doi":"10.1007/s11784-024-01101-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with the bifurcation from infinity and multiplicity of solutions of the semilinear elliptic system </p><span>$$\\begin{aligned}&-\\Delta u=\\lambda u+f(x,u)-w,\\\\&-\\Delta w=\\kappa u-\\zeta w, \\end{aligned}$$</span><p>which can be considered as the stationary problem of reaction–diffusion equations. We treat this problem in the framework of dynamical systems, and deal with it via the approach of a pure dynamical nature, which is different from those in the literature. By using the Shape theory of attractors and the Poincaré–Lefschetz duality theory of Conley index, we establish some new multiplicity results of solutions of the system on bifurcations from infinity under an appropriate Landesman–Lazer type condition, improving the earlier works in the literature.</p>","PeriodicalId":54835,"journal":{"name":"Journal of Fixed Point Theory and Applications","volume":"10 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation from infinity and multiplicity of solutions for an elliptic system\",\"authors\":\"Chunqiu Li, Guanyu Chen, Jintao Wang\",\"doi\":\"10.1007/s11784-024-01101-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with the bifurcation from infinity and multiplicity of solutions of the semilinear elliptic system </p><span>$$\\\\begin{aligned}&-\\\\Delta u=\\\\lambda u+f(x,u)-w,\\\\\\\\&-\\\\Delta w=\\\\kappa u-\\\\zeta w, \\\\end{aligned}$$</span><p>which can be considered as the stationary problem of reaction–diffusion equations. We treat this problem in the framework of dynamical systems, and deal with it via the approach of a pure dynamical nature, which is different from those in the literature. By using the Shape theory of attractors and the Poincaré–Lefschetz duality theory of Conley index, we establish some new multiplicity results of solutions of the system on bifurcations from infinity under an appropriate Landesman–Lazer type condition, improving the earlier works in the literature.</p>\",\"PeriodicalId\":54835,\"journal\":{\"name\":\"Journal of Fixed Point Theory and Applications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fixed Point Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01101-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fixed Point Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01101-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
which can be considered as the stationary problem of reaction–diffusion equations. We treat this problem in the framework of dynamical systems, and deal with it via the approach of a pure dynamical nature, which is different from those in the literature. By using the Shape theory of attractors and the Poincaré–Lefschetz duality theory of Conley index, we establish some new multiplicity results of solutions of the system on bifurcations from infinity under an appropriate Landesman–Lazer type condition, improving the earlier works in the literature.
期刊介绍:
The Journal of Fixed Point Theory and Applications (JFPTA) provides a publication forum for an important research in all disciplines in which the use of tools of fixed point theory plays an essential role. Research topics include but are not limited to:
(i) New developments in fixed point theory as well as in related topological methods,
in particular:
Degree and fixed point index for various types of maps,
Algebraic topology methods in the context of the Leray-Schauder theory,
Lefschetz and Nielsen theories,
Borsuk-Ulam type results,
Vietoris fractions and fixed points for set-valued maps.
(ii) Ramifications to global analysis, dynamical systems and symplectic topology,
in particular:
Degree and Conley Index in the study of non-linear phenomena,
Lusternik-Schnirelmann and Morse theoretic methods,
Floer Homology and Hamiltonian Systems,
Elliptic complexes and the Atiyah-Bott fixed point theorem,
Symplectic fixed point theorems and results related to the Arnold Conjecture.
(iii) Significant applications in nonlinear analysis, mathematical economics and computation theory,
in particular:
Bifurcation theory and non-linear PDE-s,
Convex analysis and variational inequalities,
KKM-maps, theory of games and economics,
Fixed point algorithms for computing fixed points.
(iv) Contributions to important problems in geometry, fluid dynamics and mathematical physics,
in particular:
Global Riemannian geometry,
Nonlinear problems in fluid mechanics.