Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado, Peter A. Van Zandt, Matthew S. Lehnert
{"title":"飞蛾长鼻的不同材料特性和形态与一些大飞蛾和其他鳞翅目种类的取食习性有关","authors":"Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado, Peter A. Van Zandt, Matthew S. Lehnert","doi":"10.1098/rsfs.2023.0051","DOIUrl":null,"url":null,"abstract":"<p>Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages\",\"authors\":\"Elaine M. Bast, Natalie T. Marshall, Kendall O. Myers, Lucas W. Marsh, Martin Walschburger Hurtado, Peter A. Van Zandt, Matthew S. Lehnert\",\"doi\":\"10.1098/rsfs.2023.0051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.</p>\",\"PeriodicalId\":13795,\"journal\":{\"name\":\"Interface Focus\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interface Focus\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rsfs.2023.0051\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2023.0051","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.