具有 L1 霍普夫微分的最小微分变形

Pub Date : 2024-04-02 DOI:10.1093/imrn/rnae049
Nathaniel Sagman
{"title":"具有 L1 霍普夫微分的最小微分变形","authors":"Nathaniel Sagman","doi":"10.1093/imrn/rnae049","DOIUrl":null,"url":null,"abstract":"We prove that for any two Riemannian metrics $\\sigma _{1}, \\sigma _{2}$ on the unit disk, a homeomorphism $\\partial \\mathbb{D}\\to \\partial \\mathbb{D}$ extends to at most one quasiconformal minimal diffeomorphism $(\\mathbb{D},\\sigma _{1})\\to (\\mathbb{D},\\sigma _{2})$ with $L^{1}$ Hopf differential. For minimal Lagrangian diffeomorphisms between hyperbolic disks, the result is known, but this is the first proof that does not use anti-de Sitter geometry. We show that the result fails without the $L^{1}$ assumption in variable curvature. The key input for our proof is the uniqueness of solutions for a certain Plateau problem in a product of trees.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal Diffeomorphisms with L1 Hopf Differentials\",\"authors\":\"Nathaniel Sagman\",\"doi\":\"10.1093/imrn/rnae049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that for any two Riemannian metrics $\\\\sigma _{1}, \\\\sigma _{2}$ on the unit disk, a homeomorphism $\\\\partial \\\\mathbb{D}\\\\to \\\\partial \\\\mathbb{D}$ extends to at most one quasiconformal minimal diffeomorphism $(\\\\mathbb{D},\\\\sigma _{1})\\\\to (\\\\mathbb{D},\\\\sigma _{2})$ with $L^{1}$ Hopf differential. For minimal Lagrangian diffeomorphisms between hyperbolic disks, the result is known, but this is the first proof that does not use anti-de Sitter geometry. We show that the result fails without the $L^{1}$ assumption in variable curvature. The key input for our proof is the uniqueness of solutions for a certain Plateau problem in a product of trees.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明对于单位盘上的任意两个黎曼度量 $\sigma _{1}, \sigma _{2}$、到 \partial \mathbb{D}$ 的同构最多扩展到一个具有 $L^{1}$ 霍普夫微分的等方最小差分 $(\mathbb{D},\sigma _{1})/到 (\mathbb{D},\sigma _{2})$。对于双曲盘之间的最小拉格朗日差分,这个结果是已知的,但这是第一个不使用反德西特几何的证明。我们证明,在变曲率情况下,如果不使用 $L^{1}$ 假设,结果是不成立的。我们证明的关键输入是树积中某个高原问题解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Minimal Diffeomorphisms with L1 Hopf Differentials
We prove that for any two Riemannian metrics $\sigma _{1}, \sigma _{2}$ on the unit disk, a homeomorphism $\partial \mathbb{D}\to \partial \mathbb{D}$ extends to at most one quasiconformal minimal diffeomorphism $(\mathbb{D},\sigma _{1})\to (\mathbb{D},\sigma _{2})$ with $L^{1}$ Hopf differential. For minimal Lagrangian diffeomorphisms between hyperbolic disks, the result is known, but this is the first proof that does not use anti-de Sitter geometry. We show that the result fails without the $L^{1}$ assumption in variable curvature. The key input for our proof is the uniqueness of solutions for a certain Plateau problem in a product of trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信