{"title":"用高阶元素解决二维/三维静态斯托克斯界面问题的弱 Galerkin 方案的分析与计算","authors":"Raman Kumar, Bhupen Deka","doi":"10.1515/jnma-2023-0112","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ<jats:sup> <jats:italic>d</jats:italic> </jats:sup> (<jats:italic>d</jats:italic> = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree <jats:italic>k</jats:italic> ≥ 1 for the velocity and polynomials of degree <jats:italic>k</jats:italic> – 1 for the pressure, both are discontinuous. Optimal convergence rates of order <jats:italic>k</jats:italic> + 1 for the velocity and order <jats:italic>k</jats:italic> for the pressure are established in <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements\",\"authors\":\"Raman Kumar, Bhupen Deka\",\"doi\":\"10.1515/jnma-2023-0112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝ<jats:sup> <jats:italic>d</jats:italic> </jats:sup> (<jats:italic>d</jats:italic> = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree <jats:italic>k</jats:italic> ≥ 1 for the velocity and polynomials of degree <jats:italic>k</jats:italic> – 1 for the pressure, both are discontinuous. Optimal convergence rates of order <jats:italic>k</jats:italic> + 1 for the velocity and order <jats:italic>k</jats:italic> for the pressure are established in <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2023-0112\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2023-0112","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种高阶弱 Galerkin 有限元方法 (WG-FEM),用于求解速度和压力在 ℝ d (d = 2, 3) 中不连续的斯托克斯静止界面问题。这种 WG 方法配备了稳定的有限元,其中速度由 k ≥ 1 阶的普通多项式组成,压力由 k - 1 阶的多项式组成,两者都是不连续的。在混合网格的 L 2 规范下,速度和压力的最佳收敛率分别为 k + 1 阶和 k 阶。数值实验验证了二维和三维实例的预期精度。此外,数值结果表明,所提出的 WG 算法能够适应具有尖锐边缘、尖角和尖端的复杂和非常不规则的几何界面。
Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements
In this paper, we present a high-order weak Galerkin finite element method (WG-FEM) for solving the stationary Stokes interface problems with discontinuous velocity and pressure in ℝd (d = 2, 3). This WG method is equipped with stable finite elements consisting of usual polynomials of degree k ≥ 1 for the velocity and polynomials of degree k – 1 for the pressure, both are discontinuous. Optimal convergence rates of order k + 1 for the velocity and order k for the pressure are established in L2-norm on hybrid meshes. Numerical experiments verify the expected order of accuracy for both two-dimensional and three-dimensional examples. Moreover, numerically it is shown that the proposed WG algorithm is able to accommodate geometrically complicated and very irregular interfaces having sharp edges, cusps, and tips.