{"title":"用于 RGB-D 突出物体检测的异构融合与完整性学习网络","authors":"Haoran Gao, Yiming Su, Fasheng Wang, Haojie Li","doi":"10.1145/3656476","DOIUrl":null,"url":null,"abstract":"<p>While significant progress has been made in recent years in the field of salient object detection (SOD), there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection, denoted as HFIL-Net. In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion (MIAF) module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement (FILR) Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art (SOTA) detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"2015 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection\",\"authors\":\"Haoran Gao, Yiming Su, Fasheng Wang, Haojie Li\",\"doi\":\"10.1145/3656476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While significant progress has been made in recent years in the field of salient object detection (SOD), there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection, denoted as HFIL-Net. In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion (MIAF) module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement (FILR) Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art (SOTA) detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net.</p>\",\"PeriodicalId\":50937,\"journal\":{\"name\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"volume\":\"2015 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Multimedia Computing Communications and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656476\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656476","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection
While significant progress has been made in recent years in the field of salient object detection (SOD), there are still limitations in heterogeneous modality fusion and salient feature integrity learning. The former is primarily attributed to a paucity of attention from researchers to the fusion of cross-scale information between different modalities during processing multi-modal heterogeneous data, coupled with an absence of methods for adaptive control of their respective contributions. The latter constraint stems from the shortcomings in existing approaches concerning the prediction of salient region’s integrity. To address these problems, we propose a Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection, denoted as HFIL-Net. In response to the first challenge, we design an Advanced Semantic Guidance Aggregation (ASGA) module, which utilizes three fusion blocks to achieve the aggregation of three types of information: within-scale cross-modal, within-modal cross-scale, and cross-modal cross-scale. In addition, we embed the local fusion factor matrices in the ASGA module and utilize the global fusion factor matrices in the Multi-modal Information Adaptive Fusion (MIAF) module to control the contributions adaptively from different perspectives during the fusion process. For the second issue, we introduce the Feature Integrity Learning and Refinement (FILR) Module. It leverages the idea of ”part-whole” relationships from capsule networks to learn feature integrity and further refine the learned features through attention mechanisms. Extensive experimental results demonstrate that our proposed HFIL-Net outperforms over 17 state-of-the-art (SOTA) detection methods in testing across seven challenging standard datasets. Codes and results are available on https://github.com/BojueGao/HFIL-Net.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.