带有 Unet3+ 和 EfficientNet 的 Segnet:利用三维核磁共振成像脑图像,通过基于多尺度注意力的深度学习技术和混合启发式改进,建立脑肿瘤分割和分类模型的新型框架

Ramya D, Lakshmi C
{"title":"带有 Unet3+ 和 EfficientNet 的 Segnet:利用三维核磁共振成像脑图像,通过基于多尺度注意力的深度学习技术和混合启发式改进,建立脑肿瘤分割和分类模型的新型框架","authors":"Ramya D, Lakshmi C","doi":"10.1080/13682199.2023.2283678","DOIUrl":null,"url":null,"abstract":"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images\",\"authors\":\"Ramya D, Lakshmi C\",\"doi\":\"10.1080/13682199.2023.2283678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2023.2283678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2283678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建议采用自适应深度学习方法,利用三维核磁共振成像图像对脑肿瘤进行分割和分类。首先,收集原始的三维核磁共振成像图像并将其输入预处理,预处理完成后,对图像进行...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images
An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信