{"title":"带有 Unet3+ 和 EfficientNet 的 Segnet:利用三维核磁共振成像脑图像,通过基于多尺度注意力的深度学习技术和混合启发式改进,建立脑肿瘤分割和分类模型的新型框架","authors":"Ramya D, Lakshmi C","doi":"10.1080/13682199.2023.2283678","DOIUrl":null,"url":null,"abstract":"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images\",\"authors\":\"Ramya D, Lakshmi C\",\"doi\":\"10.1080/13682199.2023.2283678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...\",\"PeriodicalId\":22456,\"journal\":{\"name\":\"The Imaging Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Imaging Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13682199.2023.2283678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Imaging Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13682199.2023.2283678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segnet with Unet3+ and EfficientNet: a novel framework of brain tumour segmentation and classification model by multiscale attention-based deep learning techniques with hybrid heuristic improvement using 3D MRI brain images
An adaptive deep learning is recommended to segment and classify the brain tumor using 3D MRI images. Initially, the original 3D MRI images are gathered and fed into pre-processing, which is accomp...