广义贝塞尔函数的分析和几何方法

IF 1.5 3区 数学 Q1 MATHEMATICS
Teodor Bulboacă, Hanaa M. Zayed
{"title":"广义贝塞尔函数的分析和几何方法","authors":"Teodor Bulboacă, Hanaa M. Zayed","doi":"10.1186/s13660-024-03117-1","DOIUrl":null,"url":null,"abstract":"In continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by $$\\begin{aligned} \\mathrm{V}_{\\rho,r}(z):=z+\\sum_{k=1}^{\\infty} \\frac{(-r)^{k}}{4^{k}(1)_{k}(\\rho )_{k}}z^{k+1}, \\quad z\\in \\mathbb{U}, \\end{aligned}$$ for $\\rho, r\\in \\mathbb{C}^{\\ast}:=\\mathbb{C}\\setminus \\{0\\}$ . Precisely, we will use a sharp estimate for the Pochhammer symbol, that is, $\\Gamma (a+n)/\\Gamma (a+1)>(a+\\alpha )^{n-1}$ , or equivalently $(a)_{n}>a(a+\\alpha )^{n-1}$ , that was firstly proved by Baricz and Ponnusamy for $n\\in \\mathbb{N}\\setminus \\{1,2\\}$ , $a>0$ and $\\alpha \\in [0,1.302775637\\ldots ]$ in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and then proved in our paper by another method to improve it using the partial derivatives and the two-variable functions’ extremum technique for $n\\in \\mathbb{N}\\setminus \\{1,2\\}$ , $a>0$ and $0\\leq \\alpha \\leq \\sqrt{2}$ , and used to investigate the orders of starlikeness and convexity. We provide the reader with some examples to illustrate the efficiency of our theory. Our results improve, complement, and generalize some well-known (nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"41 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and geometrical approach to the generalized Bessel function\",\"authors\":\"Teodor Bulboacă, Hanaa M. Zayed\",\"doi\":\"10.1186/s13660-024-03117-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by $$\\\\begin{aligned} \\\\mathrm{V}_{\\\\rho,r}(z):=z+\\\\sum_{k=1}^{\\\\infty} \\\\frac{(-r)^{k}}{4^{k}(1)_{k}(\\\\rho )_{k}}z^{k+1}, \\\\quad z\\\\in \\\\mathbb{U}, \\\\end{aligned}$$ for $\\\\rho, r\\\\in \\\\mathbb{C}^{\\\\ast}:=\\\\mathbb{C}\\\\setminus \\\\{0\\\\}$ . Precisely, we will use a sharp estimate for the Pochhammer symbol, that is, $\\\\Gamma (a+n)/\\\\Gamma (a+1)>(a+\\\\alpha )^{n-1}$ , or equivalently $(a)_{n}>a(a+\\\\alpha )^{n-1}$ , that was firstly proved by Baricz and Ponnusamy for $n\\\\in \\\\mathbb{N}\\\\setminus \\\\{1,2\\\\}$ , $a>0$ and $\\\\alpha \\\\in [0,1.302775637\\\\ldots ]$ in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and then proved in our paper by another method to improve it using the partial derivatives and the two-variable functions’ extremum technique for $n\\\\in \\\\mathbb{N}\\\\setminus \\\\{1,2\\\\}$ , $a>0$ and $0\\\\leq \\\\alpha \\\\leq \\\\sqrt{2}$ , and used to investigate the orders of starlikeness and convexity. We provide the reader with some examples to illustrate the efficiency of our theory. Our results improve, complement, and generalize some well-known (nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03117-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03117-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在延续 Zayed 和 Bulboacă 在 (J. Inequal. Appl. 2022:158, 2022) 中的工作时,本文讨论了由 $$\begin{aligned} 定义的广义贝塞尔函数归一化形式的几何特征。\mathrm{V}_{\rho,r}(z):=z+\sum_{k=1}^{\infty}\frac{(-r)^{k}}{4^{k}(1)_{k}(\rho )_{k}}z^{k+1}, \quad z\in \mathbb{U}, \end{aligned}$$ for $\rho, r\in \mathbb{C}^{ast}:=\mathbb{C}\setminus \{0\}$ 。确切地说,我们将使用对波哈默符号的精确估计,即 $\Gamma (a+n)/\Gamma (a+1)>(a+\alpha )^{n-1}$ 、或者等价于 $(a)_{n}>a(a+\alpha )^{n-1}$ ,这是 Baricz 和 Ponnusamy 首次证明的,适用于 $n in \mathbb{N}\setminus \{1,2\}$ , $a>0$ 和 $\alpha \ in [0,1.302775637\ldots ]$ in (Integral Transforms Spec.Funct.21(9):641-653,2010)中证明,然后在我们的论文中用另一种方法对其进行了改进,利用偏导数和双变量函数的极值技术证明了 $n\in \mathbb{N}\setminus \{1,2\}$ , $a>0$ 和 $0\leq \alpha \leq \sqrt{2}$ ,并用于研究星度和凸度的阶数。我们为读者提供了一些例子来说明我们理论的效率。我们的结果改进、补充和概括了一些众所周知的(非锐利)估计,这在 "结束语与展望 "一节中可以看到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical and geometrical approach to the generalized Bessel function
In continuation of Zayed and Bulboacă work in (J. Inequal. Appl. 2022:158, 2022), this paper discusses the geometric characterization of the normalized form of the generalized Bessel function defined by $$\begin{aligned} \mathrm{V}_{\rho,r}(z):=z+\sum_{k=1}^{\infty} \frac{(-r)^{k}}{4^{k}(1)_{k}(\rho )_{k}}z^{k+1}, \quad z\in \mathbb{U}, \end{aligned}$$ for $\rho, r\in \mathbb{C}^{\ast}:=\mathbb{C}\setminus \{0\}$ . Precisely, we will use a sharp estimate for the Pochhammer symbol, that is, $\Gamma (a+n)/\Gamma (a+1)>(a+\alpha )^{n-1}$ , or equivalently $(a)_{n}>a(a+\alpha )^{n-1}$ , that was firstly proved by Baricz and Ponnusamy for $n\in \mathbb{N}\setminus \{1,2\}$ , $a>0$ and $\alpha \in [0,1.302775637\ldots ]$ in (Integral Transforms Spec. Funct. 21(9):641–653, 2010), and then proved in our paper by another method to improve it using the partial derivatives and the two-variable functions’ extremum technique for $n\in \mathbb{N}\setminus \{1,2\}$ , $a>0$ and $0\leq \alpha \leq \sqrt{2}$ , and used to investigate the orders of starlikeness and convexity. We provide the reader with some examples to illustrate the efficiency of our theory. Our results improve, complement, and generalize some well-known (nonsharp) estimates, as seen in the Concluding Remarks and Outlook section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信