(\mathbb{R}^{n}\)中紧凑超曲面的表面积公式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yen-Chang Huang
{"title":"(\\mathbb{R}^{n}\\)中紧凑超曲面的表面积公式","authors":"Yen-Chang Huang","doi":"10.1186/s13660-024-03129-x","DOIUrl":null,"url":null,"abstract":"The classical Cauchy surface area formula states that the surface area of the boundary $\\partial K=\\Sigma $ of any n-dimensional convex body in the n-dimensional Euclidean space $\\mathbb{R}^{n}$ can be obtained by the average of the projected areas of Σ along all directions in $\\mathbb{S}^{n-1}$ . In this note, we generalize the formula to the boundary of arbitrary n-dimensional submanifold in $\\mathbb{R}^{n}$ by introducing a natural notion of projected areas along any direction in $\\mathbb{S}^{n-1}$ . This surface area formula derived from the new notion coincides with not only the result of the Crofton formula but also with that of De Jong (Math. Semesterber. 60(1):81–83, 2013) by using a tubular neighborhood. We also define the projected r-volumes of Σ onto any r-dimensional subspaces and obtain a recursive formula for mean projected r-volumes of Σ.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A surface area formula for compact hypersurfaces in \\\\(\\\\mathbb{R}^{n}\\\\)\",\"authors\":\"Yen-Chang Huang\",\"doi\":\"10.1186/s13660-024-03129-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical Cauchy surface area formula states that the surface area of the boundary $\\\\partial K=\\\\Sigma $ of any n-dimensional convex body in the n-dimensional Euclidean space $\\\\mathbb{R}^{n}$ can be obtained by the average of the projected areas of Σ along all directions in $\\\\mathbb{S}^{n-1}$ . In this note, we generalize the formula to the boundary of arbitrary n-dimensional submanifold in $\\\\mathbb{R}^{n}$ by introducing a natural notion of projected areas along any direction in $\\\\mathbb{S}^{n-1}$ . This surface area formula derived from the new notion coincides with not only the result of the Crofton formula but also with that of De Jong (Math. Semesterber. 60(1):81–83, 2013) by using a tubular neighborhood. We also define the projected r-volumes of Σ onto any r-dimensional subspaces and obtain a recursive formula for mean projected r-volumes of Σ.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03129-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03129-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

经典的 Cauchy 表面积公式指出,n 维欧几里得空间 $\mathbb{R}^{n}$ 中任意 n 维凸体的边界 $\partial K=\Sigma $ 的表面积可以通过 Σ 沿 $\mathbb{S}^{n-1}$ 中所有方向的投影面积的平均值得到。在本注释中,我们通过引入沿 $\mathbb{S}^{n-1}$ 中任意方向的投影面积的自然概念,将该公式推广到 $\mathbb{R}^{n}$ 中任意 n 维子曲面的边界。这个由新概念导出的表面积公式不仅与 Crofton 公式的结果相吻合,而且与 De Jong (Math. Semesterber.Semesterber.60(1):81-83,2013)使用管状邻域的结果相吻合。我们还定义了Σ在任意r维子空间上的投影r卷,并得到了Σ的平均投影r卷的递推公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A surface area formula for compact hypersurfaces in \(\mathbb{R}^{n}\)
The classical Cauchy surface area formula states that the surface area of the boundary $\partial K=\Sigma $ of any n-dimensional convex body in the n-dimensional Euclidean space $\mathbb{R}^{n}$ can be obtained by the average of the projected areas of Σ along all directions in $\mathbb{S}^{n-1}$ . In this note, we generalize the formula to the boundary of arbitrary n-dimensional submanifold in $\mathbb{R}^{n}$ by introducing a natural notion of projected areas along any direction in $\mathbb{S}^{n-1}$ . This surface area formula derived from the new notion coincides with not only the result of the Crofton formula but also with that of De Jong (Math. Semesterber. 60(1):81–83, 2013) by using a tubular neighborhood. We also define the projected r-volumes of Σ onto any r-dimensional subspaces and obtain a recursive formula for mean projected r-volumes of Σ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信