具有完全特性边界的双曲问题

Pub Date : 2024-04-02 DOI:10.1007/s11868-024-00599-x
{"title":"具有完全特性边界的双曲问题","authors":"","doi":"10.1007/s11868-024-00599-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study first-order symmetrizable hyperbolic <span> <span>\\(N\\times N\\)</span> </span> systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at <span> <span>\\(x=0\\)</span> </span>, these systems take the form <span> <span>$$\\begin{aligned} \\partial _t u + {{\\mathcal {A}}}(t,x,y,xD_x,D_y) u = f(t,x,y), \\quad (t,x,y)\\in (0,T)\\times {{\\mathbb {R}}}_+\\times {{\\mathbb {R}}}^d, \\end{aligned}$$</span> </span>where <span> <span>\\({{\\mathcal {A}}}(t,x,y,xD_x,D_y)\\)</span> </span> is a first-order differential operator with coefficients smooth up to <span> <span>\\(x=0\\)</span> </span> and the derivative with respect to <em>x</em> appears in the combination <span> <span>\\(xD_x\\)</span> </span>. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator <span> <span>\\(\\partial _t + {{\\mathcal {A}}}(t,x,y,xD_x,D_y)\\)</span> </span> is well-posed in that scale. More specifically, solutions <em>u</em> exhibit formal asymptotic expansions of the form <span> <span>$$\\begin{aligned} u(t,x,y) \\sim \\sum _{(p,k)} \\frac{(-1)^k}{k!}x^{-p} \\log ^k \\!x \\, u_{pk}(t,y) \\quad \\hbox { as}\\ x\\rightarrow +0 \\end{aligned}$$</span> </span>where <span> <span>\\((p,k)\\in {{\\mathbb {C}}}\\times {{\\mathbb {N}}}_0\\)</span> </span> and <span> <span>\\(\\Re p\\rightarrow -\\infty \\)</span> </span> as <span> <span>\\(|p|\\rightarrow \\infty \\)</span> </span>, provided that the right-hand side <em>f</em> and the initial data <span> <span>\\(u|_{t=0}\\)</span> </span> admit asymptotic expansions as <span> <span>\\(x \\rightarrow +0\\)</span> </span> of a similar form, with the singular exponents <em>p</em> and their multiplicities unchanged. In fact, the coefficients <span> <span>\\(u_{pk}\\)</span> </span> are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients <span> <span>\\(u_{pk}\\)</span> </span> solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator <span> <span>\\(\\partial _t+{{\\mathcal {A}}}(t,x,y,xD_x,D_y)\\)</span> </span> is well-posed in the scale of standard Sobolev spaces <span> <span>\\(H^s((0,T)\\times {{\\mathbb {R}}}_+^{1+d})\\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic problems with totally characteristic boundary\",\"authors\":\"\",\"doi\":\"10.1007/s11868-024-00599-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study first-order symmetrizable hyperbolic <span> <span>\\\\(N\\\\times N\\\\)</span> </span> systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at <span> <span>\\\\(x=0\\\\)</span> </span>, these systems take the form <span> <span>$$\\\\begin{aligned} \\\\partial _t u + {{\\\\mathcal {A}}}(t,x,y,xD_x,D_y) u = f(t,x,y), \\\\quad (t,x,y)\\\\in (0,T)\\\\times {{\\\\mathbb {R}}}_+\\\\times {{\\\\mathbb {R}}}^d, \\\\end{aligned}$$</span> </span>where <span> <span>\\\\({{\\\\mathcal {A}}}(t,x,y,xD_x,D_y)\\\\)</span> </span> is a first-order differential operator with coefficients smooth up to <span> <span>\\\\(x=0\\\\)</span> </span> and the derivative with respect to <em>x</em> appears in the combination <span> <span>\\\\(xD_x\\\\)</span> </span>. No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator <span> <span>\\\\(\\\\partial _t + {{\\\\mathcal {A}}}(t,x,y,xD_x,D_y)\\\\)</span> </span> is well-posed in that scale. More specifically, solutions <em>u</em> exhibit formal asymptotic expansions of the form <span> <span>$$\\\\begin{aligned} u(t,x,y) \\\\sim \\\\sum _{(p,k)} \\\\frac{(-1)^k}{k!}x^{-p} \\\\log ^k \\\\!x \\\\, u_{pk}(t,y) \\\\quad \\\\hbox { as}\\\\ x\\\\rightarrow +0 \\\\end{aligned}$$</span> </span>where <span> <span>\\\\((p,k)\\\\in {{\\\\mathbb {C}}}\\\\times {{\\\\mathbb {N}}}_0\\\\)</span> </span> and <span> <span>\\\\(\\\\Re p\\\\rightarrow -\\\\infty \\\\)</span> </span> as <span> <span>\\\\(|p|\\\\rightarrow \\\\infty \\\\)</span> </span>, provided that the right-hand side <em>f</em> and the initial data <span> <span>\\\\(u|_{t=0}\\\\)</span> </span> admit asymptotic expansions as <span> <span>\\\\(x \\\\rightarrow +0\\\\)</span> </span> of a similar form, with the singular exponents <em>p</em> and their multiplicities unchanged. In fact, the coefficients <span> <span>\\\\(u_{pk}\\\\)</span> </span> are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients <span> <span>\\\\(u_{pk}\\\\)</span> </span> solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator <span> <span>\\\\(\\\\partial _t+{{\\\\mathcal {A}}}(t,x,y,xD_x,D_y)\\\\)</span> </span> is well-posed in the scale of standard Sobolev spaces <span> <span>\\\\(H^s((0,T)\\\\times {{\\\\mathbb {R}}}_+^{1+d})\\\\)</span> </span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00599-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00599-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We study first-order symmetrizable hyperbolic \(N\times N\) systems in a spacetime cylinder whose lateral boundary is totally characteristic.在边界附近的局部坐标处(x=0),这些系统的形式为 $$\begin{aligned}。\partial _t u + {{mathcal {A}}(t,x,y,xD_x,D_y) u = f(t,x,y), \quad (t,x,y)\in (0,T)\times {{mathbb {R}}_+times {{mathbb {R}}}^d, \end{aligned}$$ 其中 \({{mathcal {A}}(t. x,y,xD_x,D_y)) u = f(t,x,y)、x,y,xD_x,D_y))是一阶微分算子,其系数在 \(x=0\) 时是平滑的,并且相对于 x 的导数出现在 \(xD_x\) 组合中。在这种情况下不需要边界条件,相应的初值-边界问题实际上就是考希问题。我们引入了具有渐近性的索波列夫空间的某一尺度,并证明算子 \(\partial _t + {{\mathcal {A}}(t,x,y,xD_x,D_y)\) 的考奇问题在该尺度下是好求的。更具体地说,解 u 呈现出形式为 $$\begin{aligned} u(t,x,y) \sim \sum _{(p,k)} \frac{(-1)^k}{k!}x^{-p} 的形式渐近展开。\log ^k\!x \, u_{pk}(t,y) \quad \hbox { as}\x\rightarrow +0 \end{aligned}$$ 其中 \((p,k)\in {{mathbb {C}}}\times {{mathbb {N}}}_0\) and \(\Re p\rightarrow -\infty \) as \(|p|rightarrow \infty \) 、条件是右手边 f 和初始数据 \(u|_{t=0}\)允许类似形式的 \(x \rightarrow +0\)渐近展开,奇异指数 p 及其乘数不变。事实上,系数 \(u_{pk}/)一般来说不够规则,无法将渐近展开中出现的项写成张量乘积。这种情况需要对函数空间进行额外的分析。此外,我们还证明了系数 \(u_{pk}\)解决了横向边界中某些明确已知的一阶对称双曲系统。特别是,我们可以得出算子 \(\partial _t+{{\mathcal {A}}}(t,x,y,xD_x,D_y)\) 的 Cauchy 问题在标准 Sobolev 空间 \(H^s((0,T)\times {{\mathbb {R}}}_+^{1+d})\) 的尺度上是很好解决的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Hyperbolic problems with totally characteristic boundary

Abstract

We study first-order symmetrizable hyperbolic \(N\times N\) systems in a spacetime cylinder whose lateral boundary is totally characteristic. In local coordinates near the boundary at \(x=0\) , these systems take the form $$\begin{aligned} \partial _t u + {{\mathcal {A}}}(t,x,y,xD_x,D_y) u = f(t,x,y), \quad (t,x,y)\in (0,T)\times {{\mathbb {R}}}_+\times {{\mathbb {R}}}^d, \end{aligned}$$ where \({{\mathcal {A}}}(t,x,y,xD_x,D_y)\) is a first-order differential operator with coefficients smooth up to \(x=0\) and the derivative with respect to x appears in the combination \(xD_x\) . No boundary conditions are required in such a situation and corresponding initial-boundary value problems are effectively Cauchy problems. We introduce a certain scale of Sobolev spaces with asymptotics and show that the Cauchy problem for the operator \(\partial _t + {{\mathcal {A}}}(t,x,y,xD_x,D_y)\) is well-posed in that scale. More specifically, solutions u exhibit formal asymptotic expansions of the form $$\begin{aligned} u(t,x,y) \sim \sum _{(p,k)} \frac{(-1)^k}{k!}x^{-p} \log ^k \!x \, u_{pk}(t,y) \quad \hbox { as}\ x\rightarrow +0 \end{aligned}$$ where \((p,k)\in {{\mathbb {C}}}\times {{\mathbb {N}}}_0\) and \(\Re p\rightarrow -\infty \) as \(|p|\rightarrow \infty \) , provided that the right-hand side f and the initial data \(u|_{t=0}\) admit asymptotic expansions as \(x \rightarrow +0\) of a similar form, with the singular exponents p and their multiplicities unchanged. In fact, the coefficients \(u_{pk}\) are, in general, not regular enough to write the terms appearing in the asymptotic expansions as tensor products. This circumstance requires an additional analysis of the function spaces. In addition, we demonstrate that the coefficients  \(u_{pk}\) solve certain explicitly known first-order symmetrizable hyperbolic systems in the lateral boundary. Especially, it follows that the Cauchy problem for the operator \(\partial _t+{{\mathcal {A}}}(t,x,y,xD_x,D_y)\) is well-posed in the scale of standard Sobolev spaces \(H^s((0,T)\times {{\mathbb {R}}}_+^{1+d})\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信