箭矢定理、超滤波器和逆向数学

BENEDICT EASTAUGH
{"title":"箭矢定理、超滤波器和逆向数学","authors":"BENEDICT EASTAUGH","doi":"10.1017/s1755020324000054","DOIUrl":null,"url":null,"abstract":"<p>This paper initiates the reverse mathematics of social choice theory, studying Arrow’s impossibility theorem and related results including Fishburn’s possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathsf {RCA}}_0$</span></span></img></span></span>. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathsf {RCA}}_0$</span></span></img></span></span>. This approach yields a proof of Arrow’s theorem in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathsf {RCA}}_0$</span></span></img></span></span>, and thus in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm {PRA}$</span></span></img></span></span>, since Arrow’s theorem can be formalised as a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\Pi ^0_1$</span></span></img></span></span> sentence. Finally we show that Fishburn’s possibility theorem for countable societies is equivalent to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathsf {ACA}}_0$</span></span></img></span></span> over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline7.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathsf {RCA}}_0$</span></span></img></span></span>.</p>","PeriodicalId":501566,"journal":{"name":"The Review of Symbolic Logic","volume":"227 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS\",\"authors\":\"BENEDICT EASTAUGH\",\"doi\":\"10.1017/s1755020324000054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper initiates the reverse mathematics of social choice theory, studying Arrow’s impossibility theorem and related results including Fishburn’s possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathsf {RCA}}_0$</span></span></img></span></span>. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathsf {RCA}}_0$</span></span></img></span></span>. This approach yields a proof of Arrow’s theorem in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathsf {RCA}}_0$</span></span></img></span></span>, and thus in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm {PRA}$</span></span></img></span></span>, since Arrow’s theorem can be formalised as a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Pi ^0_1$</span></span></img></span></span> sentence. Finally we show that Fishburn’s possibility theorem for countable societies is equivalent to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathsf {ACA}}_0$</span></span></img></span></span> over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240405151338335-0717:S1755020324000054:S1755020324000054_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathsf {RCA}}_0$</span></span></img></span></span>.</p>\",\"PeriodicalId\":501566,\"journal\":{\"name\":\"The Review of Symbolic Logic\",\"volume\":\"227 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Review of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1755020324000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Review of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1755020324000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开创了社会选择理论的逆向数学,在逆向数学的框架内研究了阿罗的不可能性定理和相关结果,包括菲什伯恩的可能性定理和基尔曼-桑德曼定理。我们用二阶算术形式化了社会选择理论的基本概念,得出了可数社会的定义,这个定义在 ${mathsf {RCA}}_0$ 中是可行的。然后,我们证明社会福利函数的基尔曼-桑德曼分析可以在 ${\mathsf {RCA}}_0$ 中进行。这种方法可以在 ${mathsf {RCA}}_0$ 中证明阿罗定理,从而在 $\mathrm {PRA}$ 中证明阿罗定理,因为阿罗定理可以形式化为一个 $\Pi ^0_1$ 句子。最后,我们证明菲什伯恩的可数社会可能性定理等价于 ${mathsf {ACA}}_0$ over ${mathsf {RCA}}_0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ARROW’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS

This paper initiates the reverse mathematics of social choice theory, studying Arrow’s impossibility theorem and related results including Fishburn’s possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in ${\mathsf {RCA}}_0$. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in ${\mathsf {RCA}}_0$. This approach yields a proof of Arrow’s theorem in ${\mathsf {RCA}}_0$, and thus in $\mathrm {PRA}$, since Arrow’s theorem can be formalised as a $\Pi ^0_1$ sentence. Finally we show that Fishburn’s possibility theorem for countable societies is equivalent to ${\mathsf {ACA}}_0$ over ${\mathsf {RCA}}_0$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信