Mohammed A. H. Lubbad, Ikbal Leblebicioglu Kurtulus, Dervis Karaboga, Kerem Kilic, Alper Basturk, Bahriye Akay, Ozkan Ufuk Nalbantoglu, Ozden Melis Durmaz Yilmaz, Mustafa Ayata, Serkan Yilmaz, Ishak Pacal
{"title":"基于深度学习的牙科植入物分类决策支持系统比较分析","authors":"Mohammed A. H. Lubbad, Ikbal Leblebicioglu Kurtulus, Dervis Karaboga, Kerem Kilic, Alper Basturk, Bahriye Akay, Ozkan Ufuk Nalbantoglu, Ozden Melis Durmaz Yilmaz, Mustafa Ayata, Serkan Yilmaz, Ishak Pacal","doi":"10.1007/s10278-024-01086-x","DOIUrl":null,"url":null,"abstract":"<p>This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system’s potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer). The dataset comprises 1258 panoramic radiographs from patients who received implant treatments at Erciyes University Faculty of Dentistry between 2012 and 2023. It is utilized for the training and evaluation process of deep learning models and consists of prototypes from six different implant systems provided by six manufacturers. The deep learning-based dental implant system provided high classification accuracy for different dental implant brands using deep learning models. Furthermore, among all the architectures evaluated, the small model of the ConvNeXt architecture achieved an impressive accuracy rate of 94.2%, demonstrating a high level of classification success.This study emphasizes the effectiveness of deep learning-based systems in achieving high classification accuracy in dental implant types. These findings pave the way for integrating advanced deep learning tools into clinical practice, promising significant improvements in patient care and treatment outcomes.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Analysis of Deep Learning-Based Approaches for Classifying Dental Implants Decision Support System\",\"authors\":\"Mohammed A. H. Lubbad, Ikbal Leblebicioglu Kurtulus, Dervis Karaboga, Kerem Kilic, Alper Basturk, Bahriye Akay, Ozkan Ufuk Nalbantoglu, Ozden Melis Durmaz Yilmaz, Mustafa Ayata, Serkan Yilmaz, Ishak Pacal\",\"doi\":\"10.1007/s10278-024-01086-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system’s potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer). The dataset comprises 1258 panoramic radiographs from patients who received implant treatments at Erciyes University Faculty of Dentistry between 2012 and 2023. It is utilized for the training and evaluation process of deep learning models and consists of prototypes from six different implant systems provided by six manufacturers. The deep learning-based dental implant system provided high classification accuracy for different dental implant brands using deep learning models. Furthermore, among all the architectures evaluated, the small model of the ConvNeXt architecture achieved an impressive accuracy rate of 94.2%, demonstrating a high level of classification success.This study emphasizes the effectiveness of deep learning-based systems in achieving high classification accuracy in dental implant types. These findings pave the way for integrating advanced deep learning tools into clinical practice, promising significant improvements in patient care and treatment outcomes.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01086-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01086-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A Comparative Analysis of Deep Learning-Based Approaches for Classifying Dental Implants Decision Support System
This study aims to provide an effective solution for the autonomous identification of dental implant brands through a deep learning-based computer diagnostic system. It also seeks to ascertain the system’s potential in clinical practices and to offer a strategic framework for improving diagnosis and treatment processes in implantology. This study employed a total of 28 different deep learning models, including 18 convolutional neural network (CNN) models (VGG, ResNet, DenseNet, EfficientNet, RegNet, ConvNeXt) and 10 vision transformer models (Swin and Vision Transformer). The dataset comprises 1258 panoramic radiographs from patients who received implant treatments at Erciyes University Faculty of Dentistry between 2012 and 2023. It is utilized for the training and evaluation process of deep learning models and consists of prototypes from six different implant systems provided by six manufacturers. The deep learning-based dental implant system provided high classification accuracy for different dental implant brands using deep learning models. Furthermore, among all the architectures evaluated, the small model of the ConvNeXt architecture achieved an impressive accuracy rate of 94.2%, demonstrating a high level of classification success.This study emphasizes the effectiveness of deep learning-based systems in achieving high classification accuracy in dental implant types. These findings pave the way for integrating advanced deep learning tools into clinical practice, promising significant improvements in patient care and treatment outcomes.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.