{"title":"$$\\mathbb {Z}^n$$ 上的扩展索波列夫尺度","authors":"Ognjen Milatovic","doi":"10.1007/s11868-024-00600-7","DOIUrl":null,"url":null,"abstract":"<p>In analogy with the definition of “extended Sobolev scale\" on <span>\\(\\mathbb {R}^n\\)</span> by Mikhailets and Murach, working in the setting of the lattice <span>\\(\\mathbb {Z}^n\\)</span>, we define the “extended Sobolev scale\" <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>, where <span>\\(\\varphi \\)</span> is a function which is <i>RO</i>-varying at infinity. Using the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>, we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces <span>\\([H^{(s_0)}(\\mathbb {Z}^n), H^{(s_1)}(\\mathbb {Z}^n)]\\)</span>, with <span>\\(s_0<s_1\\)</span>. We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>. Furthermore, starting from a first-order positive-definite (discrete) PDO <i>A</i> of elliptic type, we define the “extended discrete <i>A</i>-scale\" <span>\\(H^{\\varphi }_{A}(\\mathbb {Z}^n)\\)</span> and show that it coincides, up to norm equivalence, with the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>. Additionally, we establish the <span>\\(\\mathbb {Z}^n\\)</span>-analogues of several other properties of the scale <span>\\(H^{\\varphi }(\\mathbb {R}^n)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Sobolev scale on $$\\\\mathbb {Z}^n$$\",\"authors\":\"Ognjen Milatovic\",\"doi\":\"10.1007/s11868-024-00600-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In analogy with the definition of “extended Sobolev scale\\\" on <span>\\\\(\\\\mathbb {R}^n\\\\)</span> by Mikhailets and Murach, working in the setting of the lattice <span>\\\\(\\\\mathbb {Z}^n\\\\)</span>, we define the “extended Sobolev scale\\\" <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>, where <span>\\\\(\\\\varphi \\\\)</span> is a function which is <i>RO</i>-varying at infinity. Using the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>, we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces <span>\\\\([H^{(s_0)}(\\\\mathbb {Z}^n), H^{(s_1)}(\\\\mathbb {Z}^n)]\\\\)</span>, with <span>\\\\(s_0<s_1\\\\)</span>. We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>. Furthermore, starting from a first-order positive-definite (discrete) PDO <i>A</i> of elliptic type, we define the “extended discrete <i>A</i>-scale\\\" <span>\\\\(H^{\\\\varphi }_{A}(\\\\mathbb {Z}^n)\\\\)</span> and show that it coincides, up to norm equivalence, with the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>. Additionally, we establish the <span>\\\\(\\\\mathbb {Z}^n\\\\)</span>-analogues of several other properties of the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {R}^n)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00600-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00600-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
与 Mikhailets 和 Murach 对 \(\mathbb {R}^n\)上的 "扩展索波列夫尺度 "的定义类似,在晶格 \(\mathbb {Z}^n\)的背景下,我们定义了 "扩展索波列夫尺度"\(H^{\varphi }(\mathbb {Z}^n)\),其中 \(\varphi \)是一个在无穷远处为 RO 变化的函数。使用尺度 \(H^{\varphi }(\mathbb {Z}^n)\),我们就一对离散的索波列夫空间 \([H^{(s_0)}(\mathbb {Z}^n), H^{(s_1)}(\mathbb {Z}^n)]\),用 \(s_0<s_1\) 描述了所有作为插值空间的希尔伯特函数空间。我们利用这一插值结果得到了尺度 \(H^{\varphi }(\mathbb {Z}^n)\)背景下(离散)伪微分算子(PDOs)的映射性质和弗雷德霍尔性质。此外,从椭圆型的一阶正inite(离散)PDO A 开始,我们定义了 "扩展离散 A 尺度"(H^{\varphi }_{A}(\mathbb {Z}^n)),并证明它与尺度(H^{\varphi }(\mathbb {Z}^n))重合,直到规范等价。此外,我们还建立了尺度 \(H^{\varphi }(\mathbb {R}^n)\) 的其他几个性质的 \(\mathbb {Z}^n\)-analogues of several other properties of the scale \(H^{\varphi }(\mathbb {R}^n)\).
In analogy with the definition of “extended Sobolev scale" on \(\mathbb {R}^n\) by Mikhailets and Murach, working in the setting of the lattice \(\mathbb {Z}^n\), we define the “extended Sobolev scale" \(H^{\varphi }(\mathbb {Z}^n)\), where \(\varphi \) is a function which is RO-varying at infinity. Using the scale \(H^{\varphi }(\mathbb {Z}^n)\), we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces \([H^{(s_0)}(\mathbb {Z}^n), H^{(s_1)}(\mathbb {Z}^n)]\), with \(s_0<s_1\). We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale \(H^{\varphi }(\mathbb {Z}^n)\). Furthermore, starting from a first-order positive-definite (discrete) PDO A of elliptic type, we define the “extended discrete A-scale" \(H^{\varphi }_{A}(\mathbb {Z}^n)\) and show that it coincides, up to norm equivalence, with the scale \(H^{\varphi }(\mathbb {Z}^n)\). Additionally, we establish the \(\mathbb {Z}^n\)-analogues of several other properties of the scale \(H^{\varphi }(\mathbb {R}^n)\).