$$\mathbb {Z}^n$$ 上的扩展索波列夫尺度

Pub Date : 2024-04-01 DOI:10.1007/s11868-024-00600-7
Ognjen Milatovic
{"title":"$$\\mathbb {Z}^n$$ 上的扩展索波列夫尺度","authors":"Ognjen Milatovic","doi":"10.1007/s11868-024-00600-7","DOIUrl":null,"url":null,"abstract":"<p>In analogy with the definition of “extended Sobolev scale\" on <span>\\(\\mathbb {R}^n\\)</span> by Mikhailets and Murach, working in the setting of the lattice <span>\\(\\mathbb {Z}^n\\)</span>, we define the “extended Sobolev scale\" <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>, where <span>\\(\\varphi \\)</span> is a function which is <i>RO</i>-varying at infinity. Using the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>, we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces <span>\\([H^{(s_0)}(\\mathbb {Z}^n), H^{(s_1)}(\\mathbb {Z}^n)]\\)</span>, with <span>\\(s_0&lt;s_1\\)</span>. We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>. Furthermore, starting from a first-order positive-definite (discrete) PDO <i>A</i> of elliptic type, we define the “extended discrete <i>A</i>-scale\" <span>\\(H^{\\varphi }_{A}(\\mathbb {Z}^n)\\)</span> and show that it coincides, up to norm equivalence, with the scale <span>\\(H^{\\varphi }(\\mathbb {Z}^n)\\)</span>. Additionally, we establish the <span>\\(\\mathbb {Z}^n\\)</span>-analogues of several other properties of the scale <span>\\(H^{\\varphi }(\\mathbb {R}^n)\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended Sobolev scale on $$\\\\mathbb {Z}^n$$\",\"authors\":\"Ognjen Milatovic\",\"doi\":\"10.1007/s11868-024-00600-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In analogy with the definition of “extended Sobolev scale\\\" on <span>\\\\(\\\\mathbb {R}^n\\\\)</span> by Mikhailets and Murach, working in the setting of the lattice <span>\\\\(\\\\mathbb {Z}^n\\\\)</span>, we define the “extended Sobolev scale\\\" <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>, where <span>\\\\(\\\\varphi \\\\)</span> is a function which is <i>RO</i>-varying at infinity. Using the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>, we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces <span>\\\\([H^{(s_0)}(\\\\mathbb {Z}^n), H^{(s_1)}(\\\\mathbb {Z}^n)]\\\\)</span>, with <span>\\\\(s_0&lt;s_1\\\\)</span>. We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>. Furthermore, starting from a first-order positive-definite (discrete) PDO <i>A</i> of elliptic type, we define the “extended discrete <i>A</i>-scale\\\" <span>\\\\(H^{\\\\varphi }_{A}(\\\\mathbb {Z}^n)\\\\)</span> and show that it coincides, up to norm equivalence, with the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {Z}^n)\\\\)</span>. Additionally, we establish the <span>\\\\(\\\\mathbb {Z}^n\\\\)</span>-analogues of several other properties of the scale <span>\\\\(H^{\\\\varphi }(\\\\mathbb {R}^n)\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00600-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00600-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与 Mikhailets 和 Murach 对 \(\mathbb {R}^n\)上的 "扩展索波列夫尺度 "的定义类似,在晶格 \(\mathbb {Z}^n\)的背景下,我们定义了 "扩展索波列夫尺度"\(H^{\varphi }(\mathbb {Z}^n)\),其中 \(\varphi \)是一个在无穷远处为 RO 变化的函数。使用尺度 \(H^{\varphi }(\mathbb {Z}^n)\),我们就一对离散的索波列夫空间 \([H^{(s_0)}(\mathbb {Z}^n), H^{(s_1)}(\mathbb {Z}^n)]\),用 \(s_0<s_1\) 描述了所有作为插值空间的希尔伯特函数空间。我们利用这一插值结果得到了尺度 \(H^{\varphi }(\mathbb {Z}^n)\)背景下(离散)伪微分算子(PDOs)的映射性质和弗雷德霍尔性质。此外,从椭圆型的一阶正inite(离散)PDO A 开始,我们定义了 "扩展离散 A 尺度"(H^{\varphi }_{A}(\mathbb {Z}^n)),并证明它与尺度(H^{\varphi }(\mathbb {Z}^n))重合,直到规范等价。此外,我们还建立了尺度 \(H^{\varphi }(\mathbb {R}^n)\) 的其他几个性质的 \(\mathbb {Z}^n\)-analogues of several other properties of the scale \(H^{\varphi }(\mathbb {R}^n)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Extended Sobolev scale on $$\mathbb {Z}^n$$

In analogy with the definition of “extended Sobolev scale" on \(\mathbb {R}^n\) by Mikhailets and Murach, working in the setting of the lattice \(\mathbb {Z}^n\), we define the “extended Sobolev scale" \(H^{\varphi }(\mathbb {Z}^n)\), where \(\varphi \) is a function which is RO-varying at infinity. Using the scale \(H^{\varphi }(\mathbb {Z}^n)\), we describe all Hilbert function-spaces that serve as interpolation spaces with respect to a pair of discrete Sobolev spaces \([H^{(s_0)}(\mathbb {Z}^n), H^{(s_1)}(\mathbb {Z}^n)]\), with \(s_0<s_1\). We use this interpolation result to obtain the mapping property and the Fredholmness property of (discrete) pseudo-differential operators (PDOs) in the context of the scale \(H^{\varphi }(\mathbb {Z}^n)\). Furthermore, starting from a first-order positive-definite (discrete) PDO A of elliptic type, we define the “extended discrete A-scale" \(H^{\varphi }_{A}(\mathbb {Z}^n)\) and show that it coincides, up to norm equivalence, with the scale \(H^{\varphi }(\mathbb {Z}^n)\). Additionally, we establish the \(\mathbb {Z}^n\)-analogues of several other properties of the scale \(H^{\varphi }(\mathbb {R}^n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信