无性群作用下的子空间对偶和正交框架

IF 0.9 3区 数学 Q2 MATHEMATICS
Sudipta Sarkar, Niraj K. Shukla
{"title":"无性群作用下的子空间对偶和正交框架","authors":"Sudipta Sarkar, Niraj K. Shukla","doi":"10.1007/s11868-024-00594-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup <span>\\(\\Gamma \\)</span> of a locally compact group <span>\\({\\mathscr {G}}.\\)</span> These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair <span>\\(({\\mathscr {G}}, \\Gamma ).\\)</span> We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, <i>p</i>-adic fields <span>\\({\\mathbb {Q}} p,\\)</span> locally compact abelian groups using the fiberization map.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"3 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subspace dual and orthogonal frames by action of an abelian group\",\"authors\":\"Sudipta Sarkar, Niraj K. Shukla\",\"doi\":\"10.1007/s11868-024-00594-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup <span>\\\\(\\\\Gamma \\\\)</span> of a locally compact group <span>\\\\({\\\\mathscr {G}}.\\\\)</span> These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair <span>\\\\(({\\\\mathscr {G}}, \\\\Gamma ).\\\\)</span> We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, <i>p</i>-adic fields <span>\\\\({\\\\mathbb {Q}} p,\\\\)</span> locally compact abelian groups using the fiberization map.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00594-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00594-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们讨论了局部紧凑群 \({\mathscr {G}}.\) 的封闭无边子群 \(\Gamma \) 的作用平移框架的子空间对偶,这些子空间对偶并不需要位于框架生成的空间中。我们描述了涉及扎克变换的一对 \(({\mathscr {G}}, \Gamma ).\) 的框架/雷斯兹基的平移生成子空间对偶的特征。我们利用扎克变换继续讨论两个平移生成的贝塞尔对的正交性,这使我们能够探索超框架的对偶。举例来说,我们利用纤维化映射将我们的发现扩展到花键、Gabor 系统、p-adic 场 \({\mathbb {Q}} p,\)局部紧凑无性群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subspace dual and orthogonal frames by action of an abelian group

In this article, we discuss subspace duals of a frame of translates by an action of a closed abelian subgroup \(\Gamma \) of a locally compact group \({\mathscr {G}}.\) These subspace duals are not required to lie in the space generated by the frame. We characterise translation-generated subspace duals of a frame/Riesz basis involving the Zak transform for the pair \(({\mathscr {G}}, \Gamma ).\) We continue our discussion on the orthogonality of two translation-generated Bessel pairs using the Zak transform, which allows us to explore the dual of super-frames. As an example, we extend our findings to splines, Gabor systems, p-adic fields \({\mathbb {Q}} p,\) locally compact abelian groups using the fiberization map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信