{"title":"通过投影和通过商的数字半群","authors":"Tristram Bogart, Christopher O’Neill, Kevin Woods","doi":"10.1007/s00454-024-00643-z","DOIUrl":null,"url":null,"abstract":"<p>We examine two natural operations to create numerical semigroups. We say that a numerical semigroup <span>\\({\\mathcal {S}}\\)</span> is <i>k</i>-normalescent if it is the projection of the set of integer points in a <i>k</i>-dimensional polyhedral cone, and we say that <span>\\({\\mathcal {S}}\\)</span> is a <i>k</i>-quotient if it is the quotient of a numerical semigroup with <i>k</i> generators. We prove that all <i>k</i>-quotients are <i>k</i>-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with <i>k</i> extreme rays (possibly lying in a dimension smaller than <i>k</i>) is a <i>k</i>-quotient. The discrete geometric perspective of studying cones is useful for studying <i>k</i>-quotients: in particular, we use it to prove that the sum of a <span>\\(k_1\\)</span>-quotient and a <span>\\(k_2\\)</span>-quotient is a <span>\\((k_1+k_2)\\)</span>-quotient. In addition, we prove several results about when a numerical semigroup is <i>not</i> <i>k</i>-normalescent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Semigroups via Projections and via Quotients\",\"authors\":\"Tristram Bogart, Christopher O’Neill, Kevin Woods\",\"doi\":\"10.1007/s00454-024-00643-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine two natural operations to create numerical semigroups. We say that a numerical semigroup <span>\\\\({\\\\mathcal {S}}\\\\)</span> is <i>k</i>-normalescent if it is the projection of the set of integer points in a <i>k</i>-dimensional polyhedral cone, and we say that <span>\\\\({\\\\mathcal {S}}\\\\)</span> is a <i>k</i>-quotient if it is the quotient of a numerical semigroup with <i>k</i> generators. We prove that all <i>k</i>-quotients are <i>k</i>-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with <i>k</i> extreme rays (possibly lying in a dimension smaller than <i>k</i>) is a <i>k</i>-quotient. The discrete geometric perspective of studying cones is useful for studying <i>k</i>-quotients: in particular, we use it to prove that the sum of a <span>\\\\(k_1\\\\)</span>-quotient and a <span>\\\\(k_2\\\\)</span>-quotient is a <span>\\\\((k_1+k_2)\\\\)</span>-quotient. In addition, we prove several results about when a numerical semigroup is <i>not</i> <i>k</i>-normalescent.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00643-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00643-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了创建数值半群的两种自然操作。如果数字半群 \({\mathcal {S}}\) 是整数点集在 k 维多面体圆锥中的投影,我们就说它是 k 正态的;如果数字半群 \({\mathcal {S}}\) 是具有 k 个生成子的商,我们就说\({\mathcal {S}}\) 是 k 商。我们证明了所有的k-商都是k-正态的,虽然反过来一般是假的,但我们证明了在一个有k条极端射线(可能位于比k小的维度)的圆锥中整数点集的投影是一个k-商。研究圆锥的离散几何视角对于研究 k-商非常有用:特别是,我们用它来证明一个 \(k_1\)- 商与一个 \(k_2\)- 商的和是\((k_1+k_2)\)-商。此外,我们还证明了关于数值半群不是 k-normalescent 的几个结果。
Numerical Semigroups via Projections and via Quotients
We examine two natural operations to create numerical semigroups. We say that a numerical semigroup \({\mathcal {S}}\) is k-normalescent if it is the projection of the set of integer points in a k-dimensional polyhedral cone, and we say that \({\mathcal {S}}\) is a k-quotient if it is the quotient of a numerical semigroup with k generators. We prove that all k-quotients are k-normalescent, and although the converse is false in general, we prove that the projection of the set of integer points in a cone with k extreme rays (possibly lying in a dimension smaller than k) is a k-quotient. The discrete geometric perspective of studying cones is useful for studying k-quotients: in particular, we use it to prove that the sum of a \(k_1\)-quotient and a \(k_2\)-quotient is a \((k_1+k_2)\)-quotient. In addition, we prove several results about when a numerical semigroup is notk-normalescent.