Gabriela Quiroga, Bastien Castagneyrol, Luis Abdala‐Roberts, Xoaquín Moreira
{"title":"与气候变化有关的非生物因素对地上和地下植物相关微生物影响的荟萃分析","authors":"Gabriela Quiroga, Bastien Castagneyrol, Luis Abdala‐Roberts, Xoaquín Moreira","doi":"10.1111/oik.10411","DOIUrl":null,"url":null,"abstract":"The abiotic environment exerts strong effects on plant‐associated microbes, shaping their interactions with plants and resulting ecosystem processes. However, these abiotic effects on plant–microbe interactions are often highly specific and contingent on the abiotic driver or microbial group, requiring synthesis work describing general patterns and from this generate hypotheses and guide mechanistic work. To address this, we conducted a meta‐analysis of the effects of climate change‐related abiotic factors, namely warming, drought, and eCO<jats:sub>2</jats:sub>, on plant‐associated microbes distinguishing by microbial taxonomic or biological group (bacteria, fungi or virus) and the plant part where microbes are found or associated with (phyllosphere or rhizosphere). We found abiotic driver‐specific patterns, whereby drought significantly reduced microbial abundance, whereas warming and eCO<jats:sub>2</jats:sub> had no significant effects. In addition, these abiotic effects were contingent on the microbial taxonomic group, with fungi being negatively affected by drought but positively affected by warming (eCO<jats:sub>2</jats:sub> enrichment had no effect), whereas bacteria and viruses were not significantly affected by any factor. Likewise, rhizospheric microbes were negatively affected by drought but positively affected by warming (eCO<jats:sub>2</jats:sub> enrichment had no effect), whereas phyllospheric microbes were not significantly affected by any factor. Collectively, these findings point to important implications for global change research by highlighting contrasting effects of climate change‐related abiotic drivers on plant‐associated microbes and the contingency of such effects on microbe life histories and the nature of their interactions with plants.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"107 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A meta‐analysis of the effects of climate change‐related abiotic factors on aboveground and belowground plant‐associated microbes\",\"authors\":\"Gabriela Quiroga, Bastien Castagneyrol, Luis Abdala‐Roberts, Xoaquín Moreira\",\"doi\":\"10.1111/oik.10411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abiotic environment exerts strong effects on plant‐associated microbes, shaping their interactions with plants and resulting ecosystem processes. However, these abiotic effects on plant–microbe interactions are often highly specific and contingent on the abiotic driver or microbial group, requiring synthesis work describing general patterns and from this generate hypotheses and guide mechanistic work. To address this, we conducted a meta‐analysis of the effects of climate change‐related abiotic factors, namely warming, drought, and eCO<jats:sub>2</jats:sub>, on plant‐associated microbes distinguishing by microbial taxonomic or biological group (bacteria, fungi or virus) and the plant part where microbes are found or associated with (phyllosphere or rhizosphere). We found abiotic driver‐specific patterns, whereby drought significantly reduced microbial abundance, whereas warming and eCO<jats:sub>2</jats:sub> had no significant effects. In addition, these abiotic effects were contingent on the microbial taxonomic group, with fungi being negatively affected by drought but positively affected by warming (eCO<jats:sub>2</jats:sub> enrichment had no effect), whereas bacteria and viruses were not significantly affected by any factor. Likewise, rhizospheric microbes were negatively affected by drought but positively affected by warming (eCO<jats:sub>2</jats:sub> enrichment had no effect), whereas phyllospheric microbes were not significantly affected by any factor. Collectively, these findings point to important implications for global change research by highlighting contrasting effects of climate change‐related abiotic drivers on plant‐associated microbes and the contingency of such effects on microbe life histories and the nature of their interactions with plants.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10411\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10411","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
A meta‐analysis of the effects of climate change‐related abiotic factors on aboveground and belowground plant‐associated microbes
The abiotic environment exerts strong effects on plant‐associated microbes, shaping their interactions with plants and resulting ecosystem processes. However, these abiotic effects on plant–microbe interactions are often highly specific and contingent on the abiotic driver or microbial group, requiring synthesis work describing general patterns and from this generate hypotheses and guide mechanistic work. To address this, we conducted a meta‐analysis of the effects of climate change‐related abiotic factors, namely warming, drought, and eCO2, on plant‐associated microbes distinguishing by microbial taxonomic or biological group (bacteria, fungi or virus) and the plant part where microbes are found or associated with (phyllosphere or rhizosphere). We found abiotic driver‐specific patterns, whereby drought significantly reduced microbial abundance, whereas warming and eCO2 had no significant effects. In addition, these abiotic effects were contingent on the microbial taxonomic group, with fungi being negatively affected by drought but positively affected by warming (eCO2 enrichment had no effect), whereas bacteria and viruses were not significantly affected by any factor. Likewise, rhizospheric microbes were negatively affected by drought but positively affected by warming (eCO2 enrichment had no effect), whereas phyllospheric microbes were not significantly affected by any factor. Collectively, these findings point to important implications for global change research by highlighting contrasting effects of climate change‐related abiotic drivers on plant‐associated microbes and the contingency of such effects on microbe life histories and the nature of their interactions with plants.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.