$$\mathbb {R}^n$ 的紧凑扩展上 Gabor 变换的海森堡不确定性原理

IF 0.9 3区 数学 Q2 MATHEMATICS
Kais Smaoui, Khouloud Abid
{"title":"$$\\mathbb {R}^n$ 的紧凑扩展上 Gabor 变换的海森堡不确定性原理","authors":"Kais Smaoui, Khouloud Abid","doi":"10.1007/s11868-024-00598-y","DOIUrl":null,"url":null,"abstract":"<p>We prove in this paper a generalization of Heisenberg inequality for Gabor transform in the setup of the semidirect product <span>\\(\\mathbb {R}^n\\rtimes K\\)</span>, where <i>K</i> is a compact subgroup of automorphisms of <span>\\(\\mathbb {R}^n\\)</span>. We also solve the sharpness problem and thus we obtain an optimal analogue of the Heisenberg inequality. A local uncertainty inequality for the Gabor transform is also provided, in the same context. This allows us to prove a couple of global uncertainty inequalities. The representation theory and Plancherel formula are fundamental tools in the proof of our results.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heisenberg uncertainty principle for Gabor transform on compact extensions of $$\\\\mathbb {R}^n$$\",\"authors\":\"Kais Smaoui, Khouloud Abid\",\"doi\":\"10.1007/s11868-024-00598-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove in this paper a generalization of Heisenberg inequality for Gabor transform in the setup of the semidirect product <span>\\\\(\\\\mathbb {R}^n\\\\rtimes K\\\\)</span>, where <i>K</i> is a compact subgroup of automorphisms of <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. We also solve the sharpness problem and thus we obtain an optimal analogue of the Heisenberg inequality. A local uncertainty inequality for the Gabor transform is also provided, in the same context. This allows us to prove a couple of global uncertainty inequalities. The representation theory and Plancherel formula are fundamental tools in the proof of our results.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00598-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00598-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在半间接积 \(\mathbb {R}^n\rtimes K\) 的设置下 Gabor 变换的海森堡不等式的广义化,其中 K 是 \(\mathbb {R}^n\) 的自变量的紧凑子群。我们还解决了尖锐性问题,从而得到了海森堡不等式的最优类比。在同样的背景下,我们还提供了 Gabor 变换的局部不确定性不等式。这样,我们就能证明几个全局不确定性不等式。表示理论和 Plancherel 公式是证明我们结果的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heisenberg uncertainty principle for Gabor transform on compact extensions of $$\mathbb {R}^n$$

We prove in this paper a generalization of Heisenberg inequality for Gabor transform in the setup of the semidirect product \(\mathbb {R}^n\rtimes K\), where K is a compact subgroup of automorphisms of \(\mathbb {R}^n\). We also solve the sharpness problem and thus we obtain an optimal analogue of the Heisenberg inequality. A local uncertainty inequality for the Gabor transform is also provided, in the same context. This allows us to prove a couple of global uncertainty inequalities. The representation theory and Plancherel formula are fundamental tools in the proof of our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
59
期刊介绍: The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信