Robert Glaum, Marcos Schöneborn, Felix Reinauer, Halil Shaqiri, Saiful M. Islam
求助PDF
{"title":"硅磷酸钛的晶体结构和晶体学分类--附硅磷酸钛 \"M 3P5SiO19\" 的结构和组成说明","authors":"Robert Glaum, Marcos Schöneborn, Felix Reinauer, Halil Shaqiri, Saiful M. Islam","doi":"10.1515/znb-2023-0099","DOIUrl":null,"url":null,"abstract":"The crystal structures of Ti<jats:sup>III</jats:sup> <jats:sub>4</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$P\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_znb-2023-0099_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 3, <jats:italic>a</jats:italic> = 14.733(1), <jats:italic>c</jats:italic> = 7.363(1) Å, <jats:italic>R</jats:italic>1 = 0.040, <jats:italic>wR</jats:italic>2 = 0.098, 7649 ind. refl., 170 variables), Fe<jats:sup>II</jats:sup> <jats:sub>0.79</jats:sub>Ti<jats:sup>III</jats:sup> <jats:sub>2.42</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>0.79</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$P\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_znb-2023-0099_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 3, <jats:italic>a</jats:italic> = 14.6534(2), <jats:italic>c</jats:italic> = 7.3829(1) Å, <jats:italic>R</jats:italic>1 = 0.036, <jats:italic>wR</jats:italic>2 = 0.088, 4026 ind. refl., 171 variables), and Ti<jats:sup>III</jats:sup> <jats:sub>2</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>6</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mi>R</m:mi> <m:mover accent=\"true\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$R\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_znb-2023-0099_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 1, <jats:italic>a</jats:italic> = 8.446(2), <jats:italic>c</jats:italic> = 44.21(2) Å, <jats:italic>R</jats:italic>1 = 0.047, <jats:italic>wR</jats:italic>2 = 0.120, 1373 ind. refl., 109 variables) have been refined from single-crystal data. The structures show hexagonal closest packing of phosphate groups with metal cations and [Si<jats:sub>2</jats:sub>O] groups occupying octahedral voids [□(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>]. The close relationship of these and other silicophosphate structures to the NiAs and <jats:italic>β</jats:italic>-Fe<jats:sub>2</jats:sub>(SO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (see also NaZr<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> “NASICON”) structure types is rationalized by group/subgroup considerations. This symmetry approach shows that systematic twinning is highly likely in silicophosphates, thus possibly leading to faulty crystal structure refinements. Our investigation strongly suggests that the proper composition of silicophosphates “<jats:italic>M</jats:italic> <jats:sup>III</jats:sup> <jats:sub>3</jats:sub>P<jats:sub>5</jats:sub>SiO<jats:sub>19</jats:sub>” (<jats:italic>M</jats:italic> = Cr, V, Fe, Mo) reported in literature is actually <jats:italic>M</jats:italic> <jats:sup>III</jats:sup> <jats:sub>4</jats:sub>-[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>]. In the mixed-valent compounds oxidation states were assigned to the cation sites by comparison to Ti<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, TiP<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> and FeTiO<jats:sub>3</jats:sub>. The powder reflectance spectrum of dark-blue Fe<jats:sup>II</jats:sup> <jats:sub>0.79</jats:sub>Ti<jats:sup>III</jats:sup> <jats:sub>2.42</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>0.79</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] shows a strong IVCT transition at <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mi>ν</m:mi> <m:mo>˜</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\widetilde{\\nu }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_znb-2023-0099_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> = 17,500 cm<jats:sup>−1</jats:sup>, and magnetic susceptibility data agree very well with the proposed oxidation states.","PeriodicalId":23831,"journal":{"name":"Zeitschrift für Naturforschung B","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M 3P5SiO19”\",\"authors\":\"Robert Glaum, Marcos Schöneborn, Felix Reinauer, Halil Shaqiri, Saiful M. Islam\",\"doi\":\"10.1515/znb-2023-0099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal structures of Ti<jats:sup>III</jats:sup> <jats:sub>4</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$P\\\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_znb-2023-0099_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 3, <jats:italic>a</jats:italic> = 14.733(1), <jats:italic>c</jats:italic> = 7.363(1) Å, <jats:italic>R</jats:italic>1 = 0.040, <jats:italic>wR</jats:italic>2 = 0.098, 7649 ind. refl., 170 variables), Fe<jats:sup>II</jats:sup> <jats:sub>0.79</jats:sub>Ti<jats:sup>III</jats:sup> <jats:sub>2.42</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>0.79</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mi>P</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$P\\\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_znb-2023-0099_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 3, <jats:italic>a</jats:italic> = 14.6534(2), <jats:italic>c</jats:italic> = 7.3829(1) Å, <jats:italic>R</jats:italic>1 = 0.036, <jats:italic>wR</jats:italic>2 = 0.088, 4026 ind. refl., 171 variables), and Ti<jats:sup>III</jats:sup> <jats:sub>2</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>6</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mi>R</m:mi> <m:mover accent=\\\"true\\\"> <m:mn>3</m:mn> <m:mo>‾</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$R\\\\overline{3}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_znb-2023-0099_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>Z</jats:italic> = 1, <jats:italic>a</jats:italic> = 8.446(2), <jats:italic>c</jats:italic> = 44.21(2) Å, <jats:italic>R</jats:italic>1 = 0.047, <jats:italic>wR</jats:italic>2 = 0.120, 1373 ind. refl., 109 variables) have been refined from single-crystal data. The structures show hexagonal closest packing of phosphate groups with metal cations and [Si<jats:sub>2</jats:sub>O] groups occupying octahedral voids [□(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>]. The close relationship of these and other silicophosphate structures to the NiAs and <jats:italic>β</jats:italic>-Fe<jats:sub>2</jats:sub>(SO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (see also NaZr<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> “NASICON”) structure types is rationalized by group/subgroup considerations. This symmetry approach shows that systematic twinning is highly likely in silicophosphates, thus possibly leading to faulty crystal structure refinements. Our investigation strongly suggests that the proper composition of silicophosphates “<jats:italic>M</jats:italic> <jats:sup>III</jats:sup> <jats:sub>3</jats:sub>P<jats:sub>5</jats:sub>SiO<jats:sub>19</jats:sub>” (<jats:italic>M</jats:italic> = Cr, V, Fe, Mo) reported in literature is actually <jats:italic>M</jats:italic> <jats:sup>III</jats:sup> <jats:sub>4</jats:sub>-[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>]. In the mixed-valent compounds oxidation states were assigned to the cation sites by comparison to Ti<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, TiP<jats:sub>2</jats:sub>O<jats:sub>7</jats:sub> and FeTiO<jats:sub>3</jats:sub>. The powder reflectance spectrum of dark-blue Fe<jats:sup>II</jats:sup> <jats:sub>0.79</jats:sub>Ti<jats:sup>III</jats:sup> <jats:sub>2.42</jats:sub>Ti<jats:sup>IV</jats:sup> <jats:sub>0.79</jats:sub>[Si<jats:sub>2</jats:sub>O(PO<jats:sub>4</jats:sub>)<jats:sub>6</jats:sub>] shows a strong IVCT transition at <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mi>ν</m:mi> <m:mo>˜</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math>$\\\\widetilde{\\\\nu }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_znb-2023-0099_ineq_004.png\\\" /> </jats:alternatives> </jats:inline-formula> = 17,500 cm<jats:sup>−1</jats:sup>, and magnetic susceptibility data agree very well with the proposed oxidation states.\",\"PeriodicalId\":23831,\"journal\":{\"name\":\"Zeitschrift für Naturforschung B\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znb-2023-0099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-2023-0099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
TiIII 4[Si2O(PO4)6](P 3 ‾ $P\overline{3}$ , Z = 3, a = 14.733(1), c = 7.363(1) Å, R1 = 0.040, wR2 = 0.098, 7649 ind、170 变量)、FeII 0.79TiIII 2.42TiIV 0.79[Si2O(PO4)6] ( P 3 ‾ $P\overline{3}$ , Z = 3, a = 14.6534(2), c = 7.3829(1) Å, R1 = 0.036, wR2 = 0.088, 4026 ind. refl、171 个变量)和 TiIII 2TiIV 6(PO4)6[Si2O(PO4)6] (R 3 ‾ $R\overline{3}$ , Z = 1, a = 8.446(2), c = 44.21(2) Å, R1 = 0.047, wR2 = 0.120, 1373 ind.这些结构显示,磷酸盐基团与金属阳离子和占据八面体空隙[□(PO4)6]的[Si2O]基团呈六方最密堆积。这些结构和其他磷酸硅结构与 NiAs 和 β-Fe2(SO4)3(另见 NaZr2(PO4)3 "NASICON")结构类型的密切关系是通过基团/亚基考虑合理化的。这种对称方法表明,硅磷酸盐中很可能存在系统孪晶,从而可能导致晶体结构细化错误。我们的研究有力地表明,文献中报道的硅磷酸盐的正确成分 "M III 3P5SiO19"(M = Cr、V、Fe、Mo)实际上是 M III 4-[Si2O(PO4)6]。通过与 Ti2O3、TiP2O7 和 FeTiO3 比较,将混合价化合物中阳离子位点的氧化态进行了分配。深蓝色 FeII 0.79TiIII 2.42TiIV 0.79[Si2O(PO4)6]的粉末反射光谱在 ν ˜ $\widetilde\{nu }$ = 17,500 cm-1 处显示了强烈的 IVCT 转变,磁感应强度数据与所提出的氧化态非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M 3P5SiO19”
The crystal structures of TiIII 4 [Si2 O(PO4 )6 ] ( P 3 ‾ $P\overline{3}$ , Z = 3, a = 14.733(1), c = 7.363(1) Å, R 1 = 0.040, wR 2 = 0.098, 7649 ind. refl., 170 variables), FeII 0.79 TiIII 2.42 TiIV 0.79 [Si2 O(PO4 )6 ] ( P 3 ‾ $P\overline{3}$ , Z = 3, a = 14.6534(2), c = 7.3829(1) Å, R 1 = 0.036, wR 2 = 0.088, 4026 ind. refl., 171 variables), and TiIII 2 TiIV 6 (PO4 )6 [Si2 O(PO4 )6 ] ( R 3 ‾ $R\overline{3}$ , Z = 1, a = 8.446(2), c = 44.21(2) Å, R 1 = 0.047, wR 2 = 0.120, 1373 ind. refl., 109 variables) have been refined from single-crystal data. The structures show hexagonal closest packing of phosphate groups with metal cations and [Si2 O] groups occupying octahedral voids [□(PO4 )6 ]. The close relationship of these and other silicophosphate structures to the NiAs and β -Fe2 (SO4 )3 (see also NaZr2 (PO4 )3 “NASICON”) structure types is rationalized by group/subgroup considerations. This symmetry approach shows that systematic twinning is highly likely in silicophosphates, thus possibly leading to faulty crystal structure refinements. Our investigation strongly suggests that the proper composition of silicophosphates “M III 3 P5 SiO19 ” (M = Cr, V, Fe, Mo) reported in literature is actually M III 4 -[Si2 O(PO4 )6 ]. In the mixed-valent compounds oxidation states were assigned to the cation sites by comparison to Ti2 O3 , TiP2 O7 and FeTiO3 . The powder reflectance spectrum of dark-blue FeII 0.79 TiIII 2.42 TiIV 0.79 [Si2 O(PO4 )6 ] shows a strong IVCT transition at ν ˜ $\widetilde{\nu }$ = 17,500 cm−1 , and magnetic susceptibility data agree very well with the proposed oxidation states.