针对过冷液体的无监督机器学习

Yunrui Qiu, Inhyuk Jang, Xuhui Huang, Arun Yethiraj
{"title":"针对过冷液体的无监督机器学习","authors":"Yunrui Qiu, Inhyuk Jang, Xuhui Huang, Arun Yethiraj","doi":"arxiv-2404.04473","DOIUrl":null,"url":null,"abstract":"Unraveling dynamic heterogeneity in supercooled liquids from structural\ninformation is one of the grand challenges of physics. In this work, we\nintroduce an unsupervised machine learning approach based on a time-lagged\nautoencoder (TAE) to elucidate the effect of structural features on the\nlong-term dynamics of supercooled liquids. The TAE uses an autoencoder to\nreconstruct features at time $t + \\Delta t$ from input features at time $t$ for\nindividual particles, and the resulting latent space variables are considered\nas order parameters. In the Kob-Andersen system, with a $\\Delta t$ about a\nthousand times smaller than the relaxation time, the TAE order parameter\nexhibits a remarkable correlation with the long-time propensity. We find that\nshort-range radial features correlate with the short-time dynamics, and\nmedium-range radial features correlate with the long-time dynamics. This shows\nthat fluctuations of medium-range structural features contain sufficient\ninformation about the long-time dynamic heterogeneity, consistent with some\ntheoretical predictions.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised machine learning for supercooled liquids\",\"authors\":\"Yunrui Qiu, Inhyuk Jang, Xuhui Huang, Arun Yethiraj\",\"doi\":\"arxiv-2404.04473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unraveling dynamic heterogeneity in supercooled liquids from structural\\ninformation is one of the grand challenges of physics. In this work, we\\nintroduce an unsupervised machine learning approach based on a time-lagged\\nautoencoder (TAE) to elucidate the effect of structural features on the\\nlong-term dynamics of supercooled liquids. The TAE uses an autoencoder to\\nreconstruct features at time $t + \\\\Delta t$ from input features at time $t$ for\\nindividual particles, and the resulting latent space variables are considered\\nas order parameters. In the Kob-Andersen system, with a $\\\\Delta t$ about a\\nthousand times smaller than the relaxation time, the TAE order parameter\\nexhibits a remarkable correlation with the long-time propensity. We find that\\nshort-range radial features correlate with the short-time dynamics, and\\nmedium-range radial features correlate with the long-time dynamics. This shows\\nthat fluctuations of medium-range structural features contain sufficient\\ninformation about the long-time dynamic heterogeneity, consistent with some\\ntheoretical predictions.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.04473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.04473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从结构信息中揭示过冷液体的动态异质性是物理学的重大挑战之一。在这项工作中,我们引入了一种基于时滞自动编码器(TAE)的无监督机器学习方法,以阐明结构特征对过冷液体长期动力学的影响。TAE 使用自动编码器从单个粒子在时间 $t$ 的输入特征重建时间 $t + \Delta t$ 的特征,并将由此产生的潜在空间变量视为阶次参数。在 Kob-Andersen 系统中,当 $\Delta t$ 小于弛豫时间约几千倍时,TAE 的阶次参数与长时倾向有显著的相关性。我们发现短程径向特征与短时动力学相关,而中程径向特征与长时动力学相关。这表明中程结构特征的波动包含了关于长时动态异质性的足够信息,这与某些理论预测是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised machine learning for supercooled liquids
Unraveling dynamic heterogeneity in supercooled liquids from structural information is one of the grand challenges of physics. In this work, we introduce an unsupervised machine learning approach based on a time-lagged autoencoder (TAE) to elucidate the effect of structural features on the long-term dynamics of supercooled liquids. The TAE uses an autoencoder to reconstruct features at time $t + \Delta t$ from input features at time $t$ for individual particles, and the resulting latent space variables are considered as order parameters. In the Kob-Andersen system, with a $\Delta t$ about a thousand times smaller than the relaxation time, the TAE order parameter exhibits a remarkable correlation with the long-time propensity. We find that short-range radial features correlate with the short-time dynamics, and medium-range radial features correlate with the long-time dynamics. This shows that fluctuations of medium-range structural features contain sufficient information about the long-time dynamic heterogeneity, consistent with some theoretical predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信