为 CAN 至 TSN 网关设计的具有缓解拥塞功能的混合关键性流量调度器

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Wenyan Yan, Dongsheng Wei, Bin Fu, Renfa Li, Guoqi Xie
{"title":"为 CAN 至 TSN 网关设计的具有缓解拥塞功能的混合关键性流量调度器","authors":"Wenyan Yan, Dongsheng Wei, Bin Fu, Renfa Li, Guoqi Xie","doi":"10.1145/3656173","DOIUrl":null,"url":null,"abstract":"<p>The network architecture that Time-Sensitive Networking (TSN) is used as the backbone network and the Controller Area Network (CAN) serves as the intra-domain network is considered as the CAN-TSN interconnection network architecture, which has gained considerable attention within industrial embedded networks, such as spacecraft, intelligent automobiles, and factory automation. The architecture employs the CAN-TSN gateway as a central hub for transmitting and managing a significant volume of communications between the CAN domains and TSN. However, the CAN-TSN gateway faces a high congestion challenge due to the rapid growth in data volume, making it difficult to effectively support different time planning mechanisms provided by TSN. In this paper, we propose a two-stage mixed-criticality traffic scheduler. The scheduler in the first stage adopts a Message Optimization Algorithm (MOA) to aggregate multiple CAN messages into a single TSN message (including the aggregation of critical and non-critical CAN messages), which reduces the number of CAN messages requiring transmission. In the second stage, the scheduler proposes a Message Scheduling Optimization Algorithm (MSOA) to schedule critical TSN messages. This algorithm reassembles all the critical CAN messages (within the un-schedulable TSN messages) to generate new TSN messages for rescheduling. Experimental results show that our proposed scheduler effectively improves the acceptance ratio of critical and non-critical CAN messages and outperforms the state-of-the-art message scheduling method in terms of acceptance ratio while improving the bandwidth utilization and the number of schedule table entries. We further construct a hardware platform to evaluate the performance of MSOA. The consistency between practical results and theoretical results shows the effectiveness of MSOA.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mixed-Criticality Traffic Scheduler with Mitigating Congestion for CAN-to-TSN Gateway\",\"authors\":\"Wenyan Yan, Dongsheng Wei, Bin Fu, Renfa Li, Guoqi Xie\",\"doi\":\"10.1145/3656173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The network architecture that Time-Sensitive Networking (TSN) is used as the backbone network and the Controller Area Network (CAN) serves as the intra-domain network is considered as the CAN-TSN interconnection network architecture, which has gained considerable attention within industrial embedded networks, such as spacecraft, intelligent automobiles, and factory automation. The architecture employs the CAN-TSN gateway as a central hub for transmitting and managing a significant volume of communications between the CAN domains and TSN. However, the CAN-TSN gateway faces a high congestion challenge due to the rapid growth in data volume, making it difficult to effectively support different time planning mechanisms provided by TSN. In this paper, we propose a two-stage mixed-criticality traffic scheduler. The scheduler in the first stage adopts a Message Optimization Algorithm (MOA) to aggregate multiple CAN messages into a single TSN message (including the aggregation of critical and non-critical CAN messages), which reduces the number of CAN messages requiring transmission. In the second stage, the scheduler proposes a Message Scheduling Optimization Algorithm (MSOA) to schedule critical TSN messages. This algorithm reassembles all the critical CAN messages (within the un-schedulable TSN messages) to generate new TSN messages for rescheduling. Experimental results show that our proposed scheduler effectively improves the acceptance ratio of critical and non-critical CAN messages and outperforms the state-of-the-art message scheduling method in terms of acceptance ratio while improving the bandwidth utilization and the number of schedule table entries. We further construct a hardware platform to evaluate the performance of MSOA. The consistency between practical results and theoretical results shows the effectiveness of MSOA.</p>\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3656173\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3656173","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

时敏网络(TSN)作为骨干网络,控制器局域网(CAN)作为域内网络的网络架构被认为是 CAN-TSN 互联网络架构,这种架构在工业嵌入式网络(如航天器、智能汽车和工厂自动化)中受到了广泛关注。该架构采用 CAN-TSN 网关作为中心枢纽,在 CAN 域和 TSN 之间传输和管理大量通信。然而,由于数据量的快速增长,CAN-TSN 网关面临着高度拥塞的挑战,难以有效支持 TSN 提供的不同时间规划机制。本文提出了一种两阶段混合关键性流量调度器。第一阶段的调度器采用报文优化算法(MOA)将多个 CAN 报文聚合成一个 TSN 报文(包括关键和非关键 CAN 报文的聚合),从而减少了需要传输的 CAN 报文数量。在第二阶段,调度器提出一种报文调度优化算法(MSOA)来调度关键 TSN 报文。该算法将所有关键 CAN 报文(在无法调度的 TSN 报文内)重新组合,生成新的 TSN 报文,以便重新调度。实验结果表明,我们提出的调度器有效提高了关键和非关键 CAN 报文的接受率,在接受率方面优于最先进的报文调度方法,同时提高了带宽利用率和调度表条目数。我们进一步构建了一个硬件平台来评估 MSOA 的性能。实际结果与理论结果的一致性表明了 MSOA 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mixed-Criticality Traffic Scheduler with Mitigating Congestion for CAN-to-TSN Gateway

The network architecture that Time-Sensitive Networking (TSN) is used as the backbone network and the Controller Area Network (CAN) serves as the intra-domain network is considered as the CAN-TSN interconnection network architecture, which has gained considerable attention within industrial embedded networks, such as spacecraft, intelligent automobiles, and factory automation. The architecture employs the CAN-TSN gateway as a central hub for transmitting and managing a significant volume of communications between the CAN domains and TSN. However, the CAN-TSN gateway faces a high congestion challenge due to the rapid growth in data volume, making it difficult to effectively support different time planning mechanisms provided by TSN. In this paper, we propose a two-stage mixed-criticality traffic scheduler. The scheduler in the first stage adopts a Message Optimization Algorithm (MOA) to aggregate multiple CAN messages into a single TSN message (including the aggregation of critical and non-critical CAN messages), which reduces the number of CAN messages requiring transmission. In the second stage, the scheduler proposes a Message Scheduling Optimization Algorithm (MSOA) to schedule critical TSN messages. This algorithm reassembles all the critical CAN messages (within the un-schedulable TSN messages) to generate new TSN messages for rescheduling. Experimental results show that our proposed scheduler effectively improves the acceptance ratio of critical and non-critical CAN messages and outperforms the state-of-the-art message scheduling method in terms of acceptance ratio while improving the bandwidth utilization and the number of schedule table entries. We further construct a hardware platform to evaluate the performance of MSOA. The consistency between practical results and theoretical results shows the effectiveness of MSOA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信