双曲空间中具有任意复杂结构的完整 CMC-1 曲面

IF 1.2 2区 数学 Q1 MATHEMATICS
Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo
{"title":"双曲空间中具有任意复杂结构的完整 CMC-1 曲面","authors":"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo","doi":"10.1142/s0219199724500111","DOIUrl":null,"url":null,"abstract":"<p>We prove that every open Riemann surface <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span> (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"52 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure\",\"authors\":\"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo\",\"doi\":\"10.1142/s0219199724500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every open Riemann surface <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span> (<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500111\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了每个开放黎曼曲面 M 都是三维双曲空间ℍ3 中恒定平均曲率 1(CMC-1)完全曲面的复结构。我们进一步建立了完全保角 CMC-1 沉浸 M→ℍ3 的射流插值定理。因此,我们证明了在ℍ3 中存在具有任意复杂结构的完全密集浸入的 CMC-1 曲面。我们将这些结果应用于本文同样建立的针对ℂ2×ℂ∗中全形空曲线的喷射插值的均匀逼近定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure

We prove that every open Riemann surface M is the complex structure of a complete surface of constant mean curvature 1 (CMC-1) in the three-dimensional hyperbolic space 3. We go further and establish a jet interpolation theorem for complete conformal CMC-1 immersions M3. As a consequence, we show the existence of complete densely immersed CMC-1 surfaces in 3 with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in 2× which is also established in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信