Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo
{"title":"双曲空间中具有任意复杂结构的完整 CMC-1 曲面","authors":"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo","doi":"10.1142/s0219199724500111","DOIUrl":null,"url":null,"abstract":"<p>We prove that every open Riemann surface <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span> (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"52 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure\",\"authors\":\"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo\",\"doi\":\"10.1142/s0219199724500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every open Riemann surface <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span> (<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>\",\"PeriodicalId\":50660,\"journal\":{\"name\":\"Communications in Contemporary Mathematics\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Contemporary Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500111\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure
We prove that every open Riemann surface is the complex structure of a complete surface of constant mean curvature () in the three-dimensional hyperbolic space . We go further and establish a jet interpolation theorem for complete conformal immersions . As a consequence, we show the existence of complete densely immersed surfaces in with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in which is also established in this paper.
期刊介绍:
With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.