Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo
{"title":"双曲空间中具有任意复杂结构的完整 CMC-1 曲面","authors":"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo","doi":"10.1142/s0219199724500111","DOIUrl":null,"url":null,"abstract":"<p>We prove that every open Riemann surface <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span> (<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure\",\"authors\":\"Antonio Alarcón, Ildefonso Castro-Infantes, Jorge Hidalgo\",\"doi\":\"10.1142/s0219199724500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that every open Riemann surface <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi></math></span><span></span> is the complex structure of a complete surface of constant mean curvature <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span> (<span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span>) in the three-dimensional hyperbolic space <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. We go further and establish a jet interpolation theorem for complete conformal <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> immersions <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>M</mi><mo>→</mo><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span>. As a consequence, we show the existence of complete densely immersed <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">CMC-1</mtext></mstyle></math></span><span></span> surfaces in <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℍ</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span><span></span> with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℂ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msup></math></span><span></span> which is also established in this paper.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219199724500111\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219199724500111","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Complete CMC-1 surfaces in hyperbolic space with arbitrary complex structure
We prove that every open Riemann surface is the complex structure of a complete surface of constant mean curvature () in the three-dimensional hyperbolic space . We go further and establish a jet interpolation theorem for complete conformal immersions . As a consequence, we show the existence of complete densely immersed surfaces in with arbitrary complex structure. We obtain these results as application of a uniform approximation theorem with jet interpolation for holomorphic null curves in which is also established in this paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.