{"title":"自动生成对数凹分布自适应剔除采样的初始点","authors":"Jonathan James","doi":"10.1007/s11222-024-10425-5","DOIUrl":null,"url":null,"abstract":"<p>Adaptive rejection sampling requires that users provide points that span the distribution’s mode. If these points are far from the mode, it significantly increases computational costs. This paper introduces a simple, automated approach for selecting initial points that uses numerical optimization to quickly bracket the mode. When an initial point is given that resides in a high-density area, the method often requires just four function evaluations to draw a sample—just one more than the sampler’s minimum. This feature makes it well-suited for Gibbs sampling, where the previous round’s draw can serve as the starting point.\n</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated generation of initial points for adaptive rejection sampling of log-concave distributions\",\"authors\":\"Jonathan James\",\"doi\":\"10.1007/s11222-024-10425-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive rejection sampling requires that users provide points that span the distribution’s mode. If these points are far from the mode, it significantly increases computational costs. This paper introduces a simple, automated approach for selecting initial points that uses numerical optimization to quickly bracket the mode. When an initial point is given that resides in a high-density area, the method often requires just four function evaluations to draw a sample—just one more than the sampler’s minimum. This feature makes it well-suited for Gibbs sampling, where the previous round’s draw can serve as the starting point.\\n</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10425-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10425-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Automated generation of initial points for adaptive rejection sampling of log-concave distributions
Adaptive rejection sampling requires that users provide points that span the distribution’s mode. If these points are far from the mode, it significantly increases computational costs. This paper introduces a simple, automated approach for selecting initial points that uses numerical optimization to quickly bracket the mode. When an initial point is given that resides in a high-density area, the method often requires just four function evaluations to draw a sample—just one more than the sampler’s minimum. This feature makes it well-suited for Gibbs sampling, where the previous round’s draw can serve as the starting point.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.