为采样数据 T-S 模糊系统设计具有指数时变增益的稳健容错模糊滤波技术

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ji Ho An, Han Sol Kim
{"title":"为采样数据 T-S 模糊系统设计具有指数时变增益的稳健容错模糊滤波技术","authors":"Ji Ho An, Han Sol Kim","doi":"10.1007/s42835-024-01911-x","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a novel approach to designing a fault-tolerant <span>\\({H}_{\\infty }\\)</span> sampled-data fuzzy filter using exponential time-varying gains. The utilization of exponential time-varying gains not only achieves a reduction in convergence time but also provides relaxation in the numerical optimization of design conditions. Also, through the use of a robust control technique, the designed filter is equipped with enhanced fault-tolerant capabilities. In addition, sufficient conditions for ensuring <span>\\({H}_{\\infty }\\)</span>-based state estimation performance are derived as linear matrix inequalities (LMIs) based on the Lyapunov–Krasovskii functional (LKF). Finally, simulation results demonstrate the superior performance of the proposed method when compared to existing methodologies.</p>","PeriodicalId":15577,"journal":{"name":"Journal of Electrical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Fault-tolerant Fuzzy Filtering with Exponential Time-varying Gains for Sampled-data T-S Fuzzy Systems\",\"authors\":\"Ji Ho An, Han Sol Kim\",\"doi\":\"10.1007/s42835-024-01911-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a novel approach to designing a fault-tolerant <span>\\\\({H}_{\\\\infty }\\\\)</span> sampled-data fuzzy filter using exponential time-varying gains. The utilization of exponential time-varying gains not only achieves a reduction in convergence time but also provides relaxation in the numerical optimization of design conditions. Also, through the use of a robust control technique, the designed filter is equipped with enhanced fault-tolerant capabilities. In addition, sufficient conditions for ensuring <span>\\\\({H}_{\\\\infty }\\\\)</span>-based state estimation performance are derived as linear matrix inequalities (LMIs) based on the Lyapunov–Krasovskii functional (LKF). Finally, simulation results demonstrate the superior performance of the proposed method when compared to existing methodologies.</p>\",\"PeriodicalId\":15577,\"journal\":{\"name\":\"Journal of Electrical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42835-024-01911-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42835-024-01911-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用指数时变增益设计容错({H}_{\infty }\ )采样数据模糊滤波器的新方法。指数时变增益的使用不仅缩短了收敛时间,而且放宽了设计条件的数值优化。同时,通过使用鲁棒控制技术,所设计的滤波器具有更强的容错能力。此外,基于 Lyapunov-Krasovskii 函数(LKF)的线性矩阵不等式(LMI)推导出了确保基于 \({H}_\{infty }\) 的状态估计性能的充分条件。最后,仿真结果表明,与现有方法相比,所提出的方法性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust Fault-tolerant Fuzzy Filtering with Exponential Time-varying Gains for Sampled-data T-S Fuzzy Systems

Robust Fault-tolerant Fuzzy Filtering with Exponential Time-varying Gains for Sampled-data T-S Fuzzy Systems

This paper proposes a novel approach to designing a fault-tolerant \({H}_{\infty }\) sampled-data fuzzy filter using exponential time-varying gains. The utilization of exponential time-varying gains not only achieves a reduction in convergence time but also provides relaxation in the numerical optimization of design conditions. Also, through the use of a robust control technique, the designed filter is equipped with enhanced fault-tolerant capabilities. In addition, sufficient conditions for ensuring \({H}_{\infty }\)-based state estimation performance are derived as linear matrix inequalities (LMIs) based on the Lyapunov–Krasovskii functional (LKF). Finally, simulation results demonstrate the superior performance of the proposed method when compared to existing methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical Engineering & Technology
Journal of Electrical Engineering & Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
4.00
自引率
15.80%
发文量
321
审稿时长
3.8 months
期刊介绍: ournal of Electrical Engineering and Technology (JEET), which is the official publication of the Korean Institute of Electrical Engineers (KIEE) being published bimonthly, released the first issue in March 2006.The journal is open to submission from scholars and experts in the wide areas of electrical engineering technologies. The scope of the journal includes all issues in the field of Electrical Engineering and Technology. Included are techniques for electrical power engineering, electrical machinery and energy conversion systems, electrophysics and applications, information and controls.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信