{"title":"先筛选后选择:高维量子回归中相关预测因子的策略","authors":"Xuejun Jiang, Yakun Liang, Haofeng Wang","doi":"10.1007/s11222-024-10424-6","DOIUrl":null,"url":null,"abstract":"<p>Strong correlation among predictors and heavy-tailed noises pose a great challenge in the analysis of ultra-high dimensional data. Such challenge leads to an increase in the computation time for discovering active variables and a decrease in selection accuracy. To address this issue, we propose an innovative two-stage screen-then-select approach and its derivative procedure based on a robust quantile regression with sparsity assumption. This approach initially screens important features by ranking quantile ridge estimation and subsequently employs a likelihood-based post-screening selection strategy to refine variable selection. Additionally, we conduct an internal competition mechanism along the greedy search path to enhance the robustness of algorithm against the design dependence. Our methods are simple to implement and possess numerous desirable properties from theoretical and computational standpoints. Theoretically, we establish the strong consistency of feature selection for the proposed methods under some regularity conditions. In empirical studies, we assess the finite sample performance of our methods by comparing them with utility screening approaches and existing penalized quantile regression methods. Furthermore, we apply our methods to identify genes associated with anticancer drug sensitivities for practical guidance.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screen then select: a strategy for correlated predictors in high-dimensional quantile regression\",\"authors\":\"Xuejun Jiang, Yakun Liang, Haofeng Wang\",\"doi\":\"10.1007/s11222-024-10424-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Strong correlation among predictors and heavy-tailed noises pose a great challenge in the analysis of ultra-high dimensional data. Such challenge leads to an increase in the computation time for discovering active variables and a decrease in selection accuracy. To address this issue, we propose an innovative two-stage screen-then-select approach and its derivative procedure based on a robust quantile regression with sparsity assumption. This approach initially screens important features by ranking quantile ridge estimation and subsequently employs a likelihood-based post-screening selection strategy to refine variable selection. Additionally, we conduct an internal competition mechanism along the greedy search path to enhance the robustness of algorithm against the design dependence. Our methods are simple to implement and possess numerous desirable properties from theoretical and computational standpoints. Theoretically, we establish the strong consistency of feature selection for the proposed methods under some regularity conditions. In empirical studies, we assess the finite sample performance of our methods by comparing them with utility screening approaches and existing penalized quantile regression methods. Furthermore, we apply our methods to identify genes associated with anticancer drug sensitivities for practical guidance.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10424-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10424-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Screen then select: a strategy for correlated predictors in high-dimensional quantile regression
Strong correlation among predictors and heavy-tailed noises pose a great challenge in the analysis of ultra-high dimensional data. Such challenge leads to an increase in the computation time for discovering active variables and a decrease in selection accuracy. To address this issue, we propose an innovative two-stage screen-then-select approach and its derivative procedure based on a robust quantile regression with sparsity assumption. This approach initially screens important features by ranking quantile ridge estimation and subsequently employs a likelihood-based post-screening selection strategy to refine variable selection. Additionally, we conduct an internal competition mechanism along the greedy search path to enhance the robustness of algorithm against the design dependence. Our methods are simple to implement and possess numerous desirable properties from theoretical and computational standpoints. Theoretically, we establish the strong consistency of feature selection for the proposed methods under some regularity conditions. In empirical studies, we assess the finite sample performance of our methods by comparing them with utility screening approaches and existing penalized quantile regression methods. Furthermore, we apply our methods to identify genes associated with anticancer drug sensitivities for practical guidance.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.