具有陡峭势阱的临界薛定谔-波西翁系统的基态解

Xiuming Mo, Mengyao Li, Anmin Mao
{"title":"具有陡峭势阱的临界薛定谔-波西翁系统的基态解","authors":"Xiuming Mo, Mengyao Li, Anmin Mao","doi":"10.1007/s13226-024-00580-w","DOIUrl":null,"url":null,"abstract":"<p>We study the following critical Schrödinger-Possion system with steep potential well </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-\\Delta u+(1+\\lambda V(x))u+\\phi u=f(u)+|u|^4u,&amp;\\text {in}\\ {\\mathbb {R}}^{3},\\\\&amp;-\\Delta \\phi =u^2,&amp;\\text {in}\\ {\\mathbb {R}}^{3}, \\end{aligned}\\right. \\end{aligned}$$</span><p>where <span>\\(\\lambda &gt;0\\)</span> is a positive parameter, <span>\\(V:{\\mathbb {R}}^{3}\\rightarrow {\\mathbb {R}}\\)</span> is a continuous function and <i>f</i> is a continuous subcritical nonlinearity. Under some certain assumptions on <i>V</i> and <i>f</i>, for any <span>\\(\\lambda \\ge \\lambda _0&gt;0\\)</span>, we prove the existence of a ground state solution via variational methods. Moreover, the concentration behavior of the ground state solution is also described as <span>\\(\\lambda \\rightarrow \\infty \\)</span>. Our results extends that in Jiang[11](J. Differ. Equ. 2011) and Zhao[21](J. Differ. Equ. 2013) to the critical growth case.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground state solutions to critical Schrödinger–Possion system with steep potential well\",\"authors\":\"Xiuming Mo, Mengyao Li, Anmin Mao\",\"doi\":\"10.1007/s13226-024-00580-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the following critical Schrödinger-Possion system with steep potential well </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{aligned}&amp;-\\\\Delta u+(1+\\\\lambda V(x))u+\\\\phi u=f(u)+|u|^4u,&amp;\\\\text {in}\\\\ {\\\\mathbb {R}}^{3},\\\\\\\\&amp;-\\\\Delta \\\\phi =u^2,&amp;\\\\text {in}\\\\ {\\\\mathbb {R}}^{3}, \\\\end{aligned}\\\\right. \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\lambda &gt;0\\\\)</span> is a positive parameter, <span>\\\\(V:{\\\\mathbb {R}}^{3}\\\\rightarrow {\\\\mathbb {R}}\\\\)</span> is a continuous function and <i>f</i> is a continuous subcritical nonlinearity. Under some certain assumptions on <i>V</i> and <i>f</i>, for any <span>\\\\(\\\\lambda \\\\ge \\\\lambda _0&gt;0\\\\)</span>, we prove the existence of a ground state solution via variational methods. Moreover, the concentration behavior of the ground state solution is also described as <span>\\\\(\\\\lambda \\\\rightarrow \\\\infty \\\\)</span>. Our results extends that in Jiang[11](J. Differ. Equ. 2011) and Zhao[21](J. Differ. Equ. 2013) to the critical growth case.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00580-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00580-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下具有陡峭势阱的临界薛定谔-玻色昂系统\Left\{ \begin{aligned}&-\Delta u+(1+\lambda V(x))u+\phi u=f(u)+|u|^4u,&\text {in}\ {\mathbb {R}}^{3},\&-\Delta \phi =u^2,&\text {in}\ {\mathbb {R}}^{3}, \end{aligned}\right.\end{aligned}$$其中 \(\lambda >0\) 是一个正参数, \(V:{\mathbb {R}^{3}\rightrow {\mathbb {R}}\) 是一个连续函数,f 是一个连续的次临界非线性。在 V 和 f 的某些假设条件下,对于任意 \(\lambda \ge \lambda _0>0\),我们通过变分法证明了基态解的存在。此外,基态解的浓度行为也可以描述为(\lambda \rightarrow \infty \)。我们的结果将 Jiang[11](J. Differ. Equ. 2011) 和 Zhao[21](J. Differ. Equ. 2013) 的结果扩展到临界增长情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground state solutions to critical Schrödinger–Possion system with steep potential well

We study the following critical Schrödinger-Possion system with steep potential well

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+(1+\lambda V(x))u+\phi u=f(u)+|u|^4u,&\text {in}\ {\mathbb {R}}^{3},\\&-\Delta \phi =u^2,&\text {in}\ {\mathbb {R}}^{3}, \end{aligned}\right. \end{aligned}$$

where \(\lambda >0\) is a positive parameter, \(V:{\mathbb {R}}^{3}\rightarrow {\mathbb {R}}\) is a continuous function and f is a continuous subcritical nonlinearity. Under some certain assumptions on V and f, for any \(\lambda \ge \lambda _0>0\), we prove the existence of a ground state solution via variational methods. Moreover, the concentration behavior of the ground state solution is also described as \(\lambda \rightarrow \infty \). Our results extends that in Jiang[11](J. Differ. Equ. 2011) and Zhao[21](J. Differ. Equ. 2013) to the critical growth case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信