利用二次正则化实现数据驱动预测控制的统一框架

Manuel Klädtke, Moritz Schulze Darup
{"title":"利用二次正则化实现数据驱动预测控制的统一框架","authors":"Manuel Klädtke, Moritz Schulze Darup","doi":"arxiv-2404.02721","DOIUrl":null,"url":null,"abstract":"Data-driven predictive control (DPC) has recently gained popularity as an\nalternative to model predictive control (MPC). Amidst the surge in proposed DPC\nframeworks, upon closer inspection, many of these frameworks are more closely\nrelated (or perhaps even equivalent) to each other than it may first appear. We\nargue for a more formal characterization of these relationships so that results\ncan be freely transferred from one framework to another, rather than being\nuniquely attributed to a particular framework. We demonstrate this idea by\nexamining the connection between $\\gamma$-DDPC and the original DeePC\nformulation.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a unifying framework for data-driven predictive control with quadratic regularization\",\"authors\":\"Manuel Klädtke, Moritz Schulze Darup\",\"doi\":\"arxiv-2404.02721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven predictive control (DPC) has recently gained popularity as an\\nalternative to model predictive control (MPC). Amidst the surge in proposed DPC\\nframeworks, upon closer inspection, many of these frameworks are more closely\\nrelated (or perhaps even equivalent) to each other than it may first appear. We\\nargue for a more formal characterization of these relationships so that results\\ncan be freely transferred from one framework to another, rather than being\\nuniquely attributed to a particular framework. We demonstrate this idea by\\nexamining the connection between $\\\\gamma$-DDPC and the original DeePC\\nformulation.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.02721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为模型预测控制(MPC)的替代方案,数据驱动预测控制(DPC)最近大受欢迎。在提出的 DPC 框架激增的同时,仔细观察会发现,其中许多框架之间的关系(甚至可能是等同的)比最初看起来的更为密切。因此,我们需要对这些关系进行更正式的描述,以便将结果从一个框架自由地转移到另一个框架,而不是将其独特地归因于某个特定的框架。我们通过考察$\gamma$-DDPC与原始DeePC公式之间的联系来证明这一想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a unifying framework for data-driven predictive control with quadratic regularization
Data-driven predictive control (DPC) has recently gained popularity as an alternative to model predictive control (MPC). Amidst the surge in proposed DPC frameworks, upon closer inspection, many of these frameworks are more closely related (or perhaps even equivalent) to each other than it may first appear. We argue for a more formal characterization of these relationships so that results can be freely transferred from one framework to another, rather than being uniquely attributed to a particular framework. We demonstrate this idea by examining the connection between $\gamma$-DDPC and the original DeePC formulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信