{"title":"用于监测分布式传感器网络的通信效率高的在线变化点检测方法","authors":"Ziyang Yang, Idris A. Eckley, Paul Fearnhead","doi":"10.1007/s11222-024-10428-2","DOIUrl":null,"url":null,"abstract":"<p>We consider the challenge of efficiently detecting changes within a network of sensors, where we also need to minimise communication between sensors and the cloud. We propose an online, communication-efficient method to detect such changes. The procedure works by performing likelihood ratio tests at each time point, and two thresholds are chosen to filter unimportant test statistics and make decisions based on the aggregated test statistics respectively. We provide asymptotic theory concerning consistency and the asymptotic distribution if there are no changes. Simulation results suggest that our method can achieve similar performance to the idealised setting, where we have no constraints on communication between sensors, but substantially reduce the transmission costs.\n</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"1 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A communication-efficient, online changepoint detection method for monitoring distributed sensor networks\",\"authors\":\"Ziyang Yang, Idris A. Eckley, Paul Fearnhead\",\"doi\":\"10.1007/s11222-024-10428-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the challenge of efficiently detecting changes within a network of sensors, where we also need to minimise communication between sensors and the cloud. We propose an online, communication-efficient method to detect such changes. The procedure works by performing likelihood ratio tests at each time point, and two thresholds are chosen to filter unimportant test statistics and make decisions based on the aggregated test statistics respectively. We provide asymptotic theory concerning consistency and the asymptotic distribution if there are no changes. Simulation results suggest that our method can achieve similar performance to the idealised setting, where we have no constraints on communication between sensors, but substantially reduce the transmission costs.\\n</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10428-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10428-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A communication-efficient, online changepoint detection method for monitoring distributed sensor networks
We consider the challenge of efficiently detecting changes within a network of sensors, where we also need to minimise communication between sensors and the cloud. We propose an online, communication-efficient method to detect such changes. The procedure works by performing likelihood ratio tests at each time point, and two thresholds are chosen to filter unimportant test statistics and make decisions based on the aggregated test statistics respectively. We provide asymptotic theory concerning consistency and the asymptotic distribution if there are no changes. Simulation results suggest that our method can achieve similar performance to the idealised setting, where we have no constraints on communication between sensors, but substantially reduce the transmission costs.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.