准纤维边界度量的 L^{2}$ -同调

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chris Kottke, Frédéric Rochon
{"title":"准纤维边界度量的 L^{2}$ -同调","authors":"Chris Kottke, Frédéric Rochon","doi":"10.1007/s00222-024-01253-5","DOIUrl":null,"url":null,"abstract":"<p>We develop new techniques to compute the weighted <span>\\(L^{2}\\)</span>-cohomology of quasi-fibered boundary metrics (QFB-metrics). Combined with the decay of <span>\\(L^{2}\\)</span>-harmonic forms obtained in a companion paper, this allows us to compute the reduced <span>\\(L^{2}\\)</span>-cohomology for various classes of QFB-metrics. Our results applies in particular to the Nakajima metric on the Hilbert scheme of <span>\\(n\\)</span> points on <span>\\(\\mathbb{C}^{2}\\)</span>, for which we can show that the Vafa-Witten conjecture holds. Using the compactification of the monopole moduli space announced by Fritzsch, the first author and Singer, we can also give a proof of the Sen conjecture for the monopole moduli space of magnetic charge 3.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$L^{2}$ -Cohomology of quasi-fibered boundary metrics\",\"authors\":\"Chris Kottke, Frédéric Rochon\",\"doi\":\"10.1007/s00222-024-01253-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop new techniques to compute the weighted <span>\\\\(L^{2}\\\\)</span>-cohomology of quasi-fibered boundary metrics (QFB-metrics). Combined with the decay of <span>\\\\(L^{2}\\\\)</span>-harmonic forms obtained in a companion paper, this allows us to compute the reduced <span>\\\\(L^{2}\\\\)</span>-cohomology for various classes of QFB-metrics. Our results applies in particular to the Nakajima metric on the Hilbert scheme of <span>\\\\(n\\\\)</span> points on <span>\\\\(\\\\mathbb{C}^{2}\\\\)</span>, for which we can show that the Vafa-Witten conjecture holds. Using the compactification of the monopole moduli space announced by Fritzsch, the first author and Singer, we can also give a proof of the Sen conjecture for the monopole moduli space of magnetic charge 3.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01253-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01253-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了计算准纤维边界度量(QFB-metrics)的加权(L^{2}\)-同调的新技术。结合在另一篇论文中得到的 \(L^{2}\)-harmonic 形式的衰减,我们就可以计算各种QFB度量的还原 \(L^{2}\)-cohomology 。我们的结果尤其适用于\(\mathbb{C}^{2}\)上的\(n\)点的希尔伯特方案上的中岛度量,我们可以证明瓦法-维滕猜想成立。利用弗里茨奇(Fritzsch)、第一作者和辛格(Singer)宣布的单极模空间的紧凑化,我们还可以给出磁荷为3的单极模空间的森猜想的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$L^{2}$ -Cohomology of quasi-fibered boundary metrics

We develop new techniques to compute the weighted \(L^{2}\)-cohomology of quasi-fibered boundary metrics (QFB-metrics). Combined with the decay of \(L^{2}\)-harmonic forms obtained in a companion paper, this allows us to compute the reduced \(L^{2}\)-cohomology for various classes of QFB-metrics. Our results applies in particular to the Nakajima metric on the Hilbert scheme of \(n\) points on \(\mathbb{C}^{2}\), for which we can show that the Vafa-Witten conjecture holds. Using the compactification of the monopole moduli space announced by Fritzsch, the first author and Singer, we can also give a proof of the Sen conjecture for the monopole moduli space of magnetic charge 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信