$mathbf{C^{2}}$ -Lusin approximation of strongly convex functions(强凸函数的鲁辛近似

IF 2.6 1区 数学 Q1 MATHEMATICS
Daniel Azagra, Marjorie Drake, Piotr Hajłasz
{"title":"$mathbf{C^{2}}$ -Lusin approximation of strongly convex functions(强凸函数的鲁辛近似","authors":"Daniel Azagra, Marjorie Drake, Piotr Hajłasz","doi":"10.1007/s00222-024-01252-6","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span>\\(u:\\mathbb{R}^{n}\\to \\mathbb{R}\\)</span> is strongly convex, then for every <span>\\(\\varepsilon &gt;0\\)</span> there is a strongly convex function <span>\\(v\\in C^{2}(\\mathbb{R}^{n})\\)</span> such that <span>\\(|\\{u\\neq v\\}|&lt;\\varepsilon \\)</span> and <span>\\(\\Vert u-v\\Vert _{\\infty}&lt;\\varepsilon \\)</span>.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"24 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathbf{C^{2}}$ -Lusin approximation of strongly convex functions\",\"authors\":\"Daniel Azagra, Marjorie Drake, Piotr Hajłasz\",\"doi\":\"10.1007/s00222-024-01252-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that if <span>\\\\(u:\\\\mathbb{R}^{n}\\\\to \\\\mathbb{R}\\\\)</span> is strongly convex, then for every <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> there is a strongly convex function <span>\\\\(v\\\\in C^{2}(\\\\mathbb{R}^{n})\\\\)</span> such that <span>\\\\(|\\\\{u\\\\neq v\\\\}|&lt;\\\\varepsilon \\\\)</span> and <span>\\\\(\\\\Vert u-v\\\\Vert _{\\\\infty}&lt;\\\\varepsilon \\\\)</span>.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01252-6\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01252-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 (u:\到 \mathbb{R}^{n}\) 是强凸的,那么对于每一个 \(\varepsilon >;0) 都有一个强凸函数 \(v\in C^{2}(\mathbb{R}^{n})\) 使得 \(|\{u\neq v\}|<\varepsilon \)和 \(\Vert u-v\Vert _\{infty}<\varepsilon \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathbf{C^{2}}$ -Lusin approximation of strongly convex functions

We prove that if \(u:\mathbb{R}^{n}\to \mathbb{R}\) is strongly convex, then for every \(\varepsilon >0\) there is a strongly convex function \(v\in C^{2}(\mathbb{R}^{n})\) such that \(|\{u\neq v\}|<\varepsilon \) and \(\Vert u-v\Vert _{\infty}<\varepsilon \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信