最大非ramified扩展的伽罗瓦群的预测分布

IF 2.6 1区 数学 Q1 MATHEMATICS
Yuan Liu, Melanie Matchett Wood, David Zureick-Brown
{"title":"最大非ramified扩展的伽罗瓦群的预测分布","authors":"Yuan Liu, Melanie Matchett Wood, David Zureick-Brown","doi":"10.1007/s00222-024-01257-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the distribution of the Galois groups <span>\\(\\operatorname {Gal}(K^{\\operatorname{un}}/K)\\)</span> of maximal unramified extensions as <span>\\(K\\)</span> ranges over <span>\\(\\Gamma \\)</span>-extensions of ℚ or <span>\\({{\\mathbb{F}}}_{q}(t)\\)</span>. We prove two properties of <span>\\(\\operatorname {Gal}(K^{\\operatorname{un}}/K)\\)</span> coming from number theory, which we use as motivation to build a probability distribution on profinite groups with these properties. In Part I, we build such a distribution as a limit of distributions on <span>\\(n\\)</span>-generated profinite groups. In Part II, we prove as <span>\\(q\\rightarrow \\infty \\)</span>, agreement of <span>\\(\\operatorname {Gal}(K^{\\operatorname{un}}/K)\\)</span> as <span>\\(K\\)</span> varies over totally real <span>\\(\\Gamma \\)</span>-extensions of <span>\\({{\\mathbb{F}}}_{q}(t)\\)</span> with our distribution from Part I, in the moments that are relatively prime to <span>\\(q(q-1)|\\Gamma |\\)</span>. In particular, we prove for every finite group <span>\\(\\Gamma \\)</span>, in the <span>\\(q\\rightarrow \\infty \\)</span> limit, the prime-to-<span>\\(q(q-1)|\\Gamma |\\)</span>-moments of the distribution of class groups of totally real <span>\\(\\Gamma \\)</span>-extensions of <span>\\({{\\mathbb{F}}}_{q}(t)\\)</span> agree with the prediction of the Cohen–Lenstra–Martinet heuristics.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"38 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predicted distribution for Galois groups of maximal unramified extensions\",\"authors\":\"Yuan Liu, Melanie Matchett Wood, David Zureick-Brown\",\"doi\":\"10.1007/s00222-024-01257-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the distribution of the Galois groups <span>\\\\(\\\\operatorname {Gal}(K^{\\\\operatorname{un}}/K)\\\\)</span> of maximal unramified extensions as <span>\\\\(K\\\\)</span> ranges over <span>\\\\(\\\\Gamma \\\\)</span>-extensions of ℚ or <span>\\\\({{\\\\mathbb{F}}}_{q}(t)\\\\)</span>. We prove two properties of <span>\\\\(\\\\operatorname {Gal}(K^{\\\\operatorname{un}}/K)\\\\)</span> coming from number theory, which we use as motivation to build a probability distribution on profinite groups with these properties. In Part I, we build such a distribution as a limit of distributions on <span>\\\\(n\\\\)</span>-generated profinite groups. In Part II, we prove as <span>\\\\(q\\\\rightarrow \\\\infty \\\\)</span>, agreement of <span>\\\\(\\\\operatorname {Gal}(K^{\\\\operatorname{un}}/K)\\\\)</span> as <span>\\\\(K\\\\)</span> varies over totally real <span>\\\\(\\\\Gamma \\\\)</span>-extensions of <span>\\\\({{\\\\mathbb{F}}}_{q}(t)\\\\)</span> with our distribution from Part I, in the moments that are relatively prime to <span>\\\\(q(q-1)|\\\\Gamma |\\\\)</span>. In particular, we prove for every finite group <span>\\\\(\\\\Gamma \\\\)</span>, in the <span>\\\\(q\\\\rightarrow \\\\infty \\\\)</span> limit, the prime-to-<span>\\\\(q(q-1)|\\\\Gamma |\\\\)</span>-moments of the distribution of class groups of totally real <span>\\\\(\\\\Gamma \\\\)</span>-extensions of <span>\\\\({{\\\\mathbb{F}}}_{q}(t)\\\\)</span> agree with the prediction of the Cohen–Lenstra–Martinet heuristics.</p>\",\"PeriodicalId\":14429,\"journal\":{\"name\":\"Inventiones mathematicae\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventiones mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01257-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01257-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是\(K)在ℚ或\({\mathbb{F}}}_{q}(t)\)的\(\Gamma \)-扩展上的范围时,最大未ramified扩展的伽罗瓦群(\(\operatorname {Gal}(K^{\operatorname{un}}/K)\) 的分布。我们证明了来自数论的\(operatorname {Gal}(K^{\operatorname{un}}/K)\) 的两个性质,并以此为基础建立了一个具有这些性质的无穷群概率分布。在第一部分中,我们建立了这样一个分布,它是\(n\)生成的无穷群上分布的一个极限。在第二部分中,我们证明了作为 \(q\rightarrow \infty \),\(operatorname {Gal}(K^{\operatorname{un}}/K)\) 与我们第一部分中的分布的完全实 \({{\mathbb{F}}}_{q}(t)\) 的扩展的 \(operatorname {Gal}(K^{\operatorname{un}}/K)\) 的一致性、在相对于 \(q(q-1)|\Gamma |\) 的质点上。特别地,我们证明对于每一个有限群(\Gamma \),在\(q\rightarrow \infty\)极限中、({{mathbb{F}}}_{q}(t)\)的完全实\(\Gamma\)-扩展的类群分布的质点到(q(q-1)|\Gamma|)-矩与科恩-伦斯特拉-马丁内特启发式的预测一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predicted distribution for Galois groups of maximal unramified extensions

We consider the distribution of the Galois groups \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) of maximal unramified extensions as \(K\) ranges over \(\Gamma \)-extensions of ℚ or \({{\mathbb{F}}}_{q}(t)\). We prove two properties of \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) coming from number theory, which we use as motivation to build a probability distribution on profinite groups with these properties. In Part I, we build such a distribution as a limit of distributions on \(n\)-generated profinite groups. In Part II, we prove as \(q\rightarrow \infty \), agreement of \(\operatorname {Gal}(K^{\operatorname{un}}/K)\) as \(K\) varies over totally real \(\Gamma \)-extensions of \({{\mathbb{F}}}_{q}(t)\) with our distribution from Part I, in the moments that are relatively prime to \(q(q-1)|\Gamma |\). In particular, we prove for every finite group \(\Gamma \), in the \(q\rightarrow \infty \) limit, the prime-to-\(q(q-1)|\Gamma |\)-moments of the distribution of class groups of totally real \(\Gamma \)-extensions of \({{\mathbb{F}}}_{q}(t)\) agree with the prediction of the Cohen–Lenstra–Martinet heuristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信