{"title":"circ_0134120:了解绝经后骨质疏松症发病机制的新领域","authors":"Junling Wang, Hongyan Zhang, Yue Cao, Irene Ma, Xuefang Liang, Dongfang Xiang","doi":"10.1530/jme-23-0140","DOIUrl":null,"url":null,"abstract":"<p>Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA-miRNA-mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database. By identifying differentially expressed circRNAs and miRNAs, we constructed a circRNA-miRNA-mRNA network and identified key genes associated with OP. Further, through a range of experimental approaches, including dual-luciferase reporter assays, RNA pull-down experiments, and qRT-PCR, we examined the roles of circ_0134120, miR-590-5p, and STAT3 in the progression of OP. Our findings reveal that the interaction between circ_0134120 and miR-590-5p in regulating STAT3 gene expression is a key mechanism in OP, suggesting the circRNA-miRNA-mRNA network ais a potential therapeutic target for this condition.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"50 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"circ_0134120: a new frontier in understanding postmenopausal osteoporosis pathogenesis\",\"authors\":\"Junling Wang, Hongyan Zhang, Yue Cao, Irene Ma, Xuefang Liang, Dongfang Xiang\",\"doi\":\"10.1530/jme-23-0140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA-miRNA-mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database. By identifying differentially expressed circRNAs and miRNAs, we constructed a circRNA-miRNA-mRNA network and identified key genes associated with OP. Further, through a range of experimental approaches, including dual-luciferase reporter assays, RNA pull-down experiments, and qRT-PCR, we examined the roles of circ_0134120, miR-590-5p, and STAT3 in the progression of OP. Our findings reveal that the interaction between circ_0134120 and miR-590-5p in regulating STAT3 gene expression is a key mechanism in OP, suggesting the circRNA-miRNA-mRNA network ais a potential therapeutic target for this condition.</p>\",\"PeriodicalId\":16570,\"journal\":{\"name\":\"Journal of molecular endocrinology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/jme-23-0140\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/jme-23-0140","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
绝经后骨质疏松症(OP)是一种流行的骨骼疾病,其分子机制尚未完全明了。本研究旨在探讨环状 RNA(circRNA)在绝经后骨质疏松症中的作用,并阐明 circRNA-miRNA-mRNA 调控网络的潜在机制。我们从基因表达总库数据库中获得了绝经后 OP 患者的 circRNA 和 miRNA 表达谱。通过识别差异表达的 circRNA 和 miRNA,我们构建了 circRNA-miRNA-mRNA 网络,并确定了与 OP 相关的关键基因。此外,我们还通过一系列实验方法,包括双荧光素酶报告实验、RNA牵引实验和qRT-PCR,研究了circ_0134120、miR-590-5p和STAT3在OP进展过程中的作用。我们的研究结果表明,circ_0134120和miR-590-5p在调控STAT3基因表达中的相互作用是OP的一个关键机制,这表明circRNA-miRNA-mRNA网络是该病的一个潜在治疗靶点。
circ_0134120: a new frontier in understanding postmenopausal osteoporosis pathogenesis
Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA-miRNA-mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database. By identifying differentially expressed circRNAs and miRNAs, we constructed a circRNA-miRNA-mRNA network and identified key genes associated with OP. Further, through a range of experimental approaches, including dual-luciferase reporter assays, RNA pull-down experiments, and qRT-PCR, we examined the roles of circ_0134120, miR-590-5p, and STAT3 in the progression of OP. Our findings reveal that the interaction between circ_0134120 and miR-590-5p in regulating STAT3 gene expression is a key mechanism in OP, suggesting the circRNA-miRNA-mRNA network ais a potential therapeutic target for this condition.
期刊介绍:
The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia.
Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.