Mueez Aizaz, Jochem A. J. van der Pol, Alina Schneider, Camila Munoz, Robert J. Holtackers, Yvonne van Cauteren, Herman van Langen, Joan G. Meeder, Braim M. Rahel, Roel Wierts, René M. Botnar, Claudia Prieto, Rik P. M. Moonen, M. Eline Kooi
{"title":"用于心脏 PET/MRI 的基于 MRI 的扩展 PET 运动校正","authors":"Mueez Aizaz, Jochem A. J. van der Pol, Alina Schneider, Camila Munoz, Robert J. Holtackers, Yvonne van Cauteren, Herman van Langen, Joan G. Meeder, Braim M. Rahel, Roel Wierts, René M. Botnar, Claudia Prieto, Rik P. M. Moonen, M. Eline Kooi","doi":"10.1186/s40658-024-00637-z","DOIUrl":null,"url":null,"abstract":"A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30–90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"3 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended MRI-based PET motion correction for cardiac PET/MRI\",\"authors\":\"Mueez Aizaz, Jochem A. J. van der Pol, Alina Schneider, Camila Munoz, Robert J. Holtackers, Yvonne van Cauteren, Herman van Langen, Joan G. Meeder, Braim M. Rahel, Roel Wierts, René M. Botnar, Claudia Prieto, Rik P. M. Moonen, M. Eline Kooi\",\"doi\":\"10.1186/s40658-024-00637-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30–90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.\",\"PeriodicalId\":11559,\"journal\":{\"name\":\"EJNMMI Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EJNMMI Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40658-024-00637-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00637-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Extended MRI-based PET motion correction for cardiac PET/MRI
A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30–90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.