广义计量布莱克-斯科尔斯方程:实现期权自相似定价

Nizar Riane, Claire David
{"title":"广义计量布莱克-斯科尔斯方程:实现期权自相似定价","authors":"Nizar Riane, Claire David","doi":"arxiv-2404.05214","DOIUrl":null,"url":null,"abstract":"In this work, we give a generalized formulation of the Black-Scholes model.\nThe novelty resides in considering the Black-Scholes model to be valid on\n'average', but such that the pointwise option price dynamics depends on a\nmeasure representing the investors' 'uncertainty'. We make use of the theory of\nnon-symmetric Dirichlet forms and the abstract theory of partial differential\nequations to establish well posedness of the problem. A detailed numerical\nanalysis is given in the case of self-similar measures.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized measure Black-Scholes equation: Towards option self-similar pricing\",\"authors\":\"Nizar Riane, Claire David\",\"doi\":\"arxiv-2404.05214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we give a generalized formulation of the Black-Scholes model.\\nThe novelty resides in considering the Black-Scholes model to be valid on\\n'average', but such that the pointwise option price dynamics depends on a\\nmeasure representing the investors' 'uncertainty'. We make use of the theory of\\nnon-symmetric Dirichlet forms and the abstract theory of partial differential\\nequations to establish well posedness of the problem. A detailed numerical\\nanalysis is given in the case of self-similar measures.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.05214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.05214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的新颖之处在于认为布莱克-斯科尔斯模型在 "平均 "上是有效的,但点式期权价格动态取决于代表投资者 "不确定性 "的度量。我们利用非对称 Dirichlet 形式理论和偏微分方程抽象理论来确定问题的假设性。在自相似度量的情况下,我们给出了详细的数值分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized measure Black-Scholes equation: Towards option self-similar pricing
In this work, we give a generalized formulation of the Black-Scholes model. The novelty resides in considering the Black-Scholes model to be valid on 'average', but such that the pointwise option price dynamics depends on a measure representing the investors' 'uncertainty'. We make use of the theory of non-symmetric Dirichlet forms and the abstract theory of partial differential equations to establish well posedness of the problem. A detailed numerical analysis is given in the case of self-similar measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信