Galerkin-regularization 和 Longon 湍流的非线性分散性质

Jian-Zhou Zhu
{"title":"Galerkin-regularization 和 Longon 湍流的非线性分散性质","authors":"Jian-Zhou Zhu","doi":"arxiv-2404.08583","DOIUrl":null,"url":null,"abstract":"With derivatives for physical insights and with mathematical analyses,\ntechnical variations and many applications though, the dynamical nature of\nGalerkin truncation in nonlinear systems is still not clear. Here, I show with\nsuch Galerkin-regularized Burgers-Hopf (GrBH) equation that the truncation\ncorresponds to a nonlinear dispersion, supporting solitons and soliton-like\nstructures (called \"longons\") and rhyming with recent expositions of dispersive\nobjects. The formulation and scenarios resemble those of soliton turbulence,\nthus suggesting \"longon turbulence\" with large degree of freedoms (finite\nthough). I also argue and numerically demonstrate that appropriate linearly\ndispersion models with an asymptotic large jump converge to the GrBH dynamics.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"237 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinearly dispersive nature of Galerkin-regularization and longon turbulence\",\"authors\":\"Jian-Zhou Zhu\",\"doi\":\"arxiv-2404.08583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With derivatives for physical insights and with mathematical analyses,\\ntechnical variations and many applications though, the dynamical nature of\\nGalerkin truncation in nonlinear systems is still not clear. Here, I show with\\nsuch Galerkin-regularized Burgers-Hopf (GrBH) equation that the truncation\\ncorresponds to a nonlinear dispersion, supporting solitons and soliton-like\\nstructures (called \\\"longons\\\") and rhyming with recent expositions of dispersive\\nobjects. The formulation and scenarios resemble those of soliton turbulence,\\nthus suggesting \\\"longon turbulence\\\" with large degree of freedoms (finite\\nthough). I also argue and numerically demonstrate that appropriate linearly\\ndispersion models with an asymptotic large jump converge to the GrBH dynamics.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"237 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.08583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.08583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然有了导数的物理启示、数学分析、技术变化和许多应用,但非线性系统中伽勒金截断的动力学性质仍不清楚。在这里,我用这种 Galerkin-regularized Burgers-Hopf (GrBH)方程证明,截断对应于非线性色散,支持孤子和孤子力结构(称为 "长子"),与最近关于色散对象的论述不谋而合。其表述和情景与孤子湍流相似,因此暗示 "长子湍流 "具有很大的自由度(尽管是有限的)。我还论证并用数值证明了具有渐近大跃迁的适当线性色散模型收敛于 GrBH 动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinearly dispersive nature of Galerkin-regularization and longon turbulence
With derivatives for physical insights and with mathematical analyses, technical variations and many applications though, the dynamical nature of Galerkin truncation in nonlinear systems is still not clear. Here, I show with such Galerkin-regularized Burgers-Hopf (GrBH) equation that the truncation corresponds to a nonlinear dispersion, supporting solitons and soliton-like structures (called "longons") and rhyming with recent expositions of dispersive objects. The formulation and scenarios resemble those of soliton turbulence, thus suggesting "longon turbulence" with large degree of freedoms (finite though). I also argue and numerically demonstrate that appropriate linearly dispersion models with an asymptotic large jump converge to the GrBH dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信