量化不确定性传播中代用模型的条件伪可逆归一化流程

Minglei Yang, Pengjun Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang
{"title":"量化不确定性传播中代用模型的条件伪可逆归一化流程","authors":"Minglei Yang, Pengjun Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang","doi":"arxiv-2404.00502","DOIUrl":null,"url":null,"abstract":"We introduce a conditional pseudo-reversible normalizing flow for\nconstructing surrogate models of a physical model polluted by additive noise to\nefficiently quantify forward and inverse uncertainty propagation. Existing\nsurrogate modeling approaches usually focus on approximating the deterministic\ncomponent of physical model. However, this strategy necessitates knowledge of\nnoise and resorts to auxiliary sampling methods for quantifying inverse\nuncertainty propagation. In this work, we develop the conditional\npseudo-reversible normalizing flow model to directly learn and efficiently\ngenerate samples from the conditional probability density functions. The\ntraining process utilizes dataset consisting of input-output pairs without\nrequiring prior knowledge about the noise and the function. Our model, once\ntrained, can generate samples from any conditional probability density\nfunctions whose high probability regions are covered by the training set.\nMoreover, the pseudo-reversibility feature allows for the use of\nfully-connected neural network architectures, which simplifies the\nimplementation and enables theoretical analysis. We provide a rigorous\nconvergence analysis of the conditional pseudo-reversible normalizing flow\nmodel, showing its ability to converge to the target conditional probability\ndensity function using the Kullback-Leibler divergence. To demonstrate the\neffectiveness of our method, we apply it to several benchmark tests and a\nreal-world geologic carbon storage problem.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation\",\"authors\":\"Minglei Yang, Pengjun Wang, Ming Fan, Dan Lu, Yanzhao Cao, Guannan Zhang\",\"doi\":\"arxiv-2404.00502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a conditional pseudo-reversible normalizing flow for\\nconstructing surrogate models of a physical model polluted by additive noise to\\nefficiently quantify forward and inverse uncertainty propagation. Existing\\nsurrogate modeling approaches usually focus on approximating the deterministic\\ncomponent of physical model. However, this strategy necessitates knowledge of\\nnoise and resorts to auxiliary sampling methods for quantifying inverse\\nuncertainty propagation. In this work, we develop the conditional\\npseudo-reversible normalizing flow model to directly learn and efficiently\\ngenerate samples from the conditional probability density functions. The\\ntraining process utilizes dataset consisting of input-output pairs without\\nrequiring prior knowledge about the noise and the function. Our model, once\\ntrained, can generate samples from any conditional probability density\\nfunctions whose high probability regions are covered by the training set.\\nMoreover, the pseudo-reversibility feature allows for the use of\\nfully-connected neural network architectures, which simplifies the\\nimplementation and enables theoretical analysis. We provide a rigorous\\nconvergence analysis of the conditional pseudo-reversible normalizing flow\\nmodel, showing its ability to converge to the target conditional probability\\ndensity function using the Kullback-Leibler divergence. To demonstrate the\\neffectiveness of our method, we apply it to several benchmark tests and a\\nreal-world geologic carbon storage problem.\",\"PeriodicalId\":501061,\"journal\":{\"name\":\"arXiv - CS - Numerical Analysis\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.00502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种条件伪可逆归一化流程,用于构建受加性噪声污染的物理模型的代用模型,以有效量化正向和反向不确定性传播。现有的代用模型方法通常侧重于近似物理模型的确定性部分。然而,这种策略需要了解噪声,并采用辅助采样方法来量化反向不确定性传播。在这项工作中,我们开发了条件伪可逆归一化流模型,以直接学习和高效生成条件概率密度函数的样本。训练过程利用由输入输出对组成的数据集,而不需要关于噪声和函数的先验知识。我们的模型经过训练后,可以从训练集覆盖的高概率区域的任何条件概率密度函数中生成样本。此外,伪可逆性特征允许使用完全连接的神经网络架构,从而简化了实现过程并实现了理论分析。我们对条件伪可逆归一化流模型进行了严格的收敛性分析,利用库尔贝-莱布勒发散,展示了其收敛到目标条件概率密度函数的能力。为了证明我们的方法的有效性,我们将其应用于几个基准测试和现实世界的地质碳储存问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conditional Pseudo-Reversible Normalizing Flow for Surrogate Modeling in Quantifying Uncertainty Propagation
We introduce a conditional pseudo-reversible normalizing flow for constructing surrogate models of a physical model polluted by additive noise to efficiently quantify forward and inverse uncertainty propagation. Existing surrogate modeling approaches usually focus on approximating the deterministic component of physical model. However, this strategy necessitates knowledge of noise and resorts to auxiliary sampling methods for quantifying inverse uncertainty propagation. In this work, we develop the conditional pseudo-reversible normalizing flow model to directly learn and efficiently generate samples from the conditional probability density functions. The training process utilizes dataset consisting of input-output pairs without requiring prior knowledge about the noise and the function. Our model, once trained, can generate samples from any conditional probability density functions whose high probability regions are covered by the training set. Moreover, the pseudo-reversibility feature allows for the use of fully-connected neural network architectures, which simplifies the implementation and enables theoretical analysis. We provide a rigorous convergence analysis of the conditional pseudo-reversible normalizing flow model, showing its ability to converge to the target conditional probability density function using the Kullback-Leibler divergence. To demonstrate the effectiveness of our method, we apply it to several benchmark tests and a real-world geologic carbon storage problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信