涉及临界增长和频率的准线性椭圆问题约束状态的存在性

{"title":"涉及临界增长和频率的准线性椭圆问题约束状态的存在性","authors":"","doi":"10.1007/s00030-024-00932-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper we study the existence of bound states for the following class of quasilinear problems, <span> <span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;-\\varepsilon ^p\\Delta _pu+V(x)u^{p-1}=f(u)+u^{p^*-1},\\ u&gt;0,\\ \\text {in}\\ {\\mathbb {R}}^{N},\\\\&amp;\\lim _{|x|\\rightarrow \\infty }u(x) = 0, \\end{aligned} \\right. \\end{aligned}$$</span> </span>where <span> <span>\\(\\varepsilon &gt;0\\)</span> </span> is small, <span> <span>\\(1&lt;p&lt;N,\\)</span> </span> <em>f</em> is a nonlinearity with general subcritical growth in the Sobolev sense, <span> <span>\\(p^{*} = pN/(N-p)\\)</span> </span> and <em>V</em> is a continuous nonnegative potential. By introducing a new set of hypotheses, our analysis includes the critical frequency case which allows the potential <em>V</em> to not be necessarily bounded below away from zero. We also study the regularity and behavior of positive solutions as <span> <span>\\(|x|\\rightarrow \\infty \\)</span> </span> or <span> <span>\\(\\varepsilon \\rightarrow 0,\\)</span> </span> proving that they are uniformly bounded and concentrate around suitable points of <span> <span>\\({\\mathbb {R}}^N,\\)</span> </span> that may include local minima of <em>V</em>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of bound states for quasilinear elliptic problems involving critical growth and frequency\",\"authors\":\"\",\"doi\":\"10.1007/s00030-024-00932-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper we study the existence of bound states for the following class of quasilinear problems, <span> <span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{aligned}&amp;-\\\\varepsilon ^p\\\\Delta _pu+V(x)u^{p-1}=f(u)+u^{p^*-1},\\\\ u&gt;0,\\\\ \\\\text {in}\\\\ {\\\\mathbb {R}}^{N},\\\\\\\\&amp;\\\\lim _{|x|\\\\rightarrow \\\\infty }u(x) = 0, \\\\end{aligned} \\\\right. \\\\end{aligned}$$</span> </span>where <span> <span>\\\\(\\\\varepsilon &gt;0\\\\)</span> </span> is small, <span> <span>\\\\(1&lt;p&lt;N,\\\\)</span> </span> <em>f</em> is a nonlinearity with general subcritical growth in the Sobolev sense, <span> <span>\\\\(p^{*} = pN/(N-p)\\\\)</span> </span> and <em>V</em> is a continuous nonnegative potential. By introducing a new set of hypotheses, our analysis includes the critical frequency case which allows the potential <em>V</em> to not be necessarily bounded below away from zero. We also study the regularity and behavior of positive solutions as <span> <span>\\\\(|x|\\\\rightarrow \\\\infty \\\\)</span> </span> or <span> <span>\\\\(\\\\varepsilon \\\\rightarrow 0,\\\\)</span> </span> proving that they are uniformly bounded and concentrate around suitable points of <span> <span>\\\\({\\\\mathbb {R}}^N,\\\\)</span> </span> that may include local minima of <em>V</em>.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00932-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00932-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 在本文中,我们研究了以下一类准线性问题的约束状态的存在性: $$\begin{aligned}\left\{ \begin{aligned}&-\varepsilon ^p\Delta _pu+V(x)u^{p-1}=f(u)+u^{p^*-1},\ u>0,\text {in}\ {\mathbb {R}}^{N},\&\lim _{|x|\rightarrow \infty }u(x) = 0, \end{aligned}.\right.\end{aligned}$$ 其中 \(\varepsilon >0\) 是小的, \(1<p<N,\) f 是在索博列夫意义上具有一般次临界增长的非线性, \(p^{*} = pN/(N-p)\) 和 V 是连续的非负势。通过引入一组新的假设,我们的分析包含了临界频率情况,它允许势 V 不一定在远离零的下方有界。我们还研究了作为 \(|x|\rightarrow \infty \) 或 \(\varepsilon \rightarrow 0,\)的正解的正则性和行为,证明它们是均匀有界的、集中在 \({\mathbb {R}}^N,\) 的合适点周围,可能包括 V 的局部极小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of bound states for quasilinear elliptic problems involving critical growth and frequency

Abstract

In this paper we study the existence of bound states for the following class of quasilinear problems, $$\begin{aligned} \left\{ \begin{aligned}&-\varepsilon ^p\Delta _pu+V(x)u^{p-1}=f(u)+u^{p^*-1},\ u>0,\ \text {in}\ {\mathbb {R}}^{N},\\&\lim _{|x|\rightarrow \infty }u(x) = 0, \end{aligned} \right. \end{aligned}$$ where \(\varepsilon >0\) is small, \(1<p<N,\) f is a nonlinearity with general subcritical growth in the Sobolev sense, \(p^{*} = pN/(N-p)\) and V is a continuous nonnegative potential. By introducing a new set of hypotheses, our analysis includes the critical frequency case which allows the potential V to not be necessarily bounded below away from zero. We also study the regularity and behavior of positive solutions as \(|x|\rightarrow \infty \) or \(\varepsilon \rightarrow 0,\) proving that they are uniformly bounded and concentrate around suitable points of \({\mathbb {R}}^N,\) that may include local minima of V.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信