基于 OpenMP 的热传导分析并行 MLPG 求解器

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Abhishek Kumar Singh, Krishna Mohan Singh
{"title":"基于 OpenMP 的热传导分析并行 MLPG 求解器","authors":"Abhishek Kumar Singh, Krishna Mohan Singh","doi":"10.1108/ec-01-2023-0012","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":"29 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenMP-based parallel MLPG solver for analysis of heat conduction\",\"authors\":\"Abhishek Kumar Singh, Krishna Mohan Singh\",\"doi\":\"10.1108/ec-01-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.</p><!--/ Abstract__block -->\",\"PeriodicalId\":50522,\"journal\":{\"name\":\"Engineering Computations\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ec-01-2023-0012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-01-2023-0012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的在本研究中,我们重点开发了一种内部并行无网格局部 Petrov-Galerkin (MLPG) 代码,用于分析二维和三维规则以及复杂几何形状中的热传导。设计/方法/途径在共享内存多核 CPU 架构上使用开放多处理 (OpenMP) 应用编程接口 (API) 实现了并行 MLPG 代码。通过数值模拟找到了序列代码的临界区域,考虑到序列代码的临界区域,开发了基于 OpenMP 的并行 MLPG 代码。对于常规三维几何体(343,000 个节点),最大速度提升和并行效率分别为 10.94 和 0.92。结果表明,并行化适用于更大的节点,因为更大节点的并行效率和速度提升更快。尽管文献表明已经开发了基于消息传递接口(MPI)的并行 MLPG 代码,但 OpenMP 模型却鲜有涉及。这项工作是首次尝试开发基于 OpenMP 的并行 MLPG 代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OpenMP-based parallel MLPG solver for analysis of heat conduction

Purpose

In the present work, we focus on developing an in-house parallel meshless local Petrov-Galerkin (MLPG) code for the analysis of heat conduction in two-dimensional and three-dimensional regular as well as complex geometries.

Design/methodology/approach

The parallel MLPG code has been implemented using open multi-processing (OpenMP) application programming interface (API) on the shared memory multicore CPU architecture. Numerical simulations have been performed to find the critical regions of the serial code, and an OpenMP-based parallel MLPG code is developed, considering the critical regions of the sequential code.

Findings

Based on performance parameters such as speed-up and parallel efficiency, the credibility of the parallelization procedure has been established. Maximum speed-up and parallel efficiency are 10.94 and 0.92 for regular three-dimensional geometry (343,000 nodes). Results demonstrate the suitability of parallelization for larger nodes as parallel efficiency and speed-up are more for the larger nodes.

Originality/value

Few attempts have been made in parallel implementation of the MLPG method for solving large-scale industrial problems. Although the literature suggests that message-passing interface (MPI) based parallel MLPG codes have been developed, the OpenMP model has rarely been touched. This work is an attempt at the development of OpenMP-based parallel MLPG code for the very first time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信