{"title":"关于微分-差分多项式的单调函数","authors":"M. L. Zeng, J. Y. Fan, M. L. Fang","doi":"10.3103/s1068362324010072","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we study unicity of meromorphic functions concerning differential-difference polynomials and mainly prove: Let <span>\\(k_{1},k_{2},\\cdots,k_{n}\\)</span> be nonnegative integers and <span>\\(k=\\)</span> max<span>\\(\\{k_{1},k_{2},\\cdots,k_{n}\\}\\)</span>, let <span>\\(l\\)</span> be the number of distinct values of <span>\\(\\{0,c_{1},c_{2},\\cdots,c_{n}\\}\\)</span>, let <span>\\(s\\)</span> be the number of distinct values of <span>\\(\\{c_{1},c_{2},\\cdots,c_{n}\\}\\)</span>, let <span>\\(f(z)\\)</span> be a nonconstant meromorphic function of finite order satisfying <span>\\(N(r,f)\\leq\\frac{1}{8(lk+l+2s-1)+1}T(r,f)\\)</span>, let <span>\\(m_{1}(z),m_{2}(z),\\cdots,m_{n}(z),\\)</span>\n<span>\\(a(z),b(z)\\)</span> be small functions of <span>\\(f(z)\\)</span> such that <span>\\(a(z)\\not\\equiv b(z)\\)</span>, let <span>\\((c_{1},k_{1}),(c_{2},k_{2}),\\)</span>\n<span>\\(\\cdots,(c_{n},k_{n})\\)</span> be distinct and let <span>\\(F(z)=m_{1}(z)f^{(k_{1})}(z+c_{1})+m_{2}(z)f^{(k_{2})}(z+c_{2})+\\cdots+m_{n}(z)f^{(k_{n})}(z+c_{n})\\)</span>. If <span>\\(f(z)\\)</span> and <span>\\(F(z)\\)</span> share <span>\\(a(z),b(z)\\)</span> CM, then <span>\\(f(z)\\equiv F(z)\\)</span>. Our results improve and extend some results due to [1, 18, 20].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unicity of Meromorphic Functions Concerning Differential-Difference Polynomials\",\"authors\":\"M. L. Zeng, J. Y. Fan, M. L. Fang\",\"doi\":\"10.3103/s1068362324010072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we study unicity of meromorphic functions concerning differential-difference polynomials and mainly prove: Let <span>\\\\(k_{1},k_{2},\\\\cdots,k_{n}\\\\)</span> be nonnegative integers and <span>\\\\(k=\\\\)</span> max<span>\\\\(\\\\{k_{1},k_{2},\\\\cdots,k_{n}\\\\}\\\\)</span>, let <span>\\\\(l\\\\)</span> be the number of distinct values of <span>\\\\(\\\\{0,c_{1},c_{2},\\\\cdots,c_{n}\\\\}\\\\)</span>, let <span>\\\\(s\\\\)</span> be the number of distinct values of <span>\\\\(\\\\{c_{1},c_{2},\\\\cdots,c_{n}\\\\}\\\\)</span>, let <span>\\\\(f(z)\\\\)</span> be a nonconstant meromorphic function of finite order satisfying <span>\\\\(N(r,f)\\\\leq\\\\frac{1}{8(lk+l+2s-1)+1}T(r,f)\\\\)</span>, let <span>\\\\(m_{1}(z),m_{2}(z),\\\\cdots,m_{n}(z),\\\\)</span>\\n<span>\\\\(a(z),b(z)\\\\)</span> be small functions of <span>\\\\(f(z)\\\\)</span> such that <span>\\\\(a(z)\\\\not\\\\equiv b(z)\\\\)</span>, let <span>\\\\((c_{1},k_{1}),(c_{2},k_{2}),\\\\)</span>\\n<span>\\\\(\\\\cdots,(c_{n},k_{n})\\\\)</span> be distinct and let <span>\\\\(F(z)=m_{1}(z)f^{(k_{1})}(z+c_{1})+m_{2}(z)f^{(k_{2})}(z+c_{2})+\\\\cdots+m_{n}(z)f^{(k_{n})}(z+c_{n})\\\\)</span>. If <span>\\\\(f(z)\\\\)</span> and <span>\\\\(F(z)\\\\)</span> share <span>\\\\(a(z),b(z)\\\\)</span> CM, then <span>\\\\(f(z)\\\\equiv F(z)\\\\)</span>. Our results improve and extend some results due to [1, 18, 20].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068362324010072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3103/s1068362324010072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Abstract 在本文中,我们研究了关于微分-差分多项式的单调性:让 \(k_{1},k_{2},\cdots,k_{n}\) 是非负整数并且 \(k=\) max\(\{k_{1},k_{2},\cdots,k_{n}\}), 让 \(l\) 是 \(\{0,c_{1},c_{2},\cdots、c_{n}\}), let \(s\) be the number of distinct values of \(\{c_{1},c_{2},\cdots,c_{n}\}), let \(f(z)\) be a nonconstant meromorphic function of finite order satisfying (N(r、f)leq\frac{1}{8(lk+l+2s-1)+1}T(r,f)),让(m_{1}(z),m_{2}(z),\cdots,m_{n}(z),\)(a(z),b(z))是(f(z))的小函数,使得(a(z)\not\equiv b(z)),让((c_{1}、k_{1}),(c_{2},k_{2}),\)\(\cdots,(c_{n},k_{n})\) be distinct and let \(F(z)=m_{1}(z)f^{(k_{1})}(z+c_{1})+m_{2}(z)f^{(k_{2})}(z+c_{2})+\cdots+m_{n}(z)f^{(k_{n})}(z+c_{n})\).如果 \(f(z)\) 和 \(F(z)\) 共享 \(a(z),b(z)\)CM,那么\(f(z)equiv F(z)\)。我们的结果改进并扩展了 [1, 18, 20] 的一些结果。
Unicity of Meromorphic Functions Concerning Differential-Difference Polynomials
Abstract
In this paper, we study unicity of meromorphic functions concerning differential-difference polynomials and mainly prove: Let \(k_{1},k_{2},\cdots,k_{n}\) be nonnegative integers and \(k=\) max\(\{k_{1},k_{2},\cdots,k_{n}\}\), let \(l\) be the number of distinct values of \(\{0,c_{1},c_{2},\cdots,c_{n}\}\), let \(s\) be the number of distinct values of \(\{c_{1},c_{2},\cdots,c_{n}\}\), let \(f(z)\) be a nonconstant meromorphic function of finite order satisfying \(N(r,f)\leq\frac{1}{8(lk+l+2s-1)+1}T(r,f)\), let \(m_{1}(z),m_{2}(z),\cdots,m_{n}(z),\)\(a(z),b(z)\) be small functions of \(f(z)\) such that \(a(z)\not\equiv b(z)\), let \((c_{1},k_{1}),(c_{2},k_{2}),\)\(\cdots,(c_{n},k_{n})\) be distinct and let \(F(z)=m_{1}(z)f^{(k_{1})}(z+c_{1})+m_{2}(z)f^{(k_{2})}(z+c_{2})+\cdots+m_{n}(z)f^{(k_{n})}(z+c_{n})\). If \(f(z)\) and \(F(z)\) share \(a(z),b(z)\) CM, then \(f(z)\equiv F(z)\). Our results improve and extend some results due to [1, 18, 20].