具有洛特卡-伏特拉竞争的双物种聚类模型的全局动力学

Weirun Tao, Zhi-An Wang, Wen Yang
{"title":"具有洛特卡-伏特拉竞争的双物种聚类模型的全局动力学","authors":"Weirun Tao, Zhi-An Wang, Wen Yang","doi":"10.1007/s00030-024-00934-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the global dynamics of a two-species Grindrod clustering model with Lotka–Volterra competition. The model takes the advective flux to depend directly upon local population densities without requiring intermediate signals like attractants or repellents to form the aggregation so as to increase the chances of survival of individuals like human populations forming small nucleated settlements. By imposing appropriate boundary conditions, we establish the global boundedness of solutions in two-dimensional bounded domains. Moreover, we prove the global stability of spatially homogeneous steady states under appropriate conditions on system parameters, and show that the rate of convergence to the coexistence steady state is exponential while the rate of convergence to the competitive exclusion steady state is algebraic.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of a two-species clustering model with Lotka–Volterra competition\",\"authors\":\"Weirun Tao, Zhi-An Wang, Wen Yang\",\"doi\":\"10.1007/s00030-024-00934-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the global dynamics of a two-species Grindrod clustering model with Lotka–Volterra competition. The model takes the advective flux to depend directly upon local population densities without requiring intermediate signals like attractants or repellents to form the aggregation so as to increase the chances of survival of individuals like human populations forming small nucleated settlements. By imposing appropriate boundary conditions, we establish the global boundedness of solutions in two-dimensional bounded domains. Moreover, we prove the global stability of spatially homogeneous steady states under appropriate conditions on system parameters, and show that the rate of convergence to the coexistence steady state is exponential while the rate of convergence to the competitive exclusion steady state is algebraic.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00934-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00934-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是具有洛特卡-伏特拉竞争的双物种格林德洛德聚类模型的全局动力学。该模型认为平流通量直接取决于局部种群密度,而不需要吸引物或排斥物等中间信号来形成聚集,从而增加了个体的生存机会,就像人类种群形成小型核聚落一样。通过施加适当的边界条件,我们确定了二维有界域中解的全局有界性。此外,在系统参数的适当条件下,我们证明了空间均质稳态的全局稳定性,并证明收敛到共存稳态的速率是指数级的,而收敛到竞争排斥稳态的速率是代数级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global dynamics of a two-species clustering model with Lotka–Volterra competition

Global dynamics of a two-species clustering model with Lotka–Volterra competition

This paper is concerned with the global dynamics of a two-species Grindrod clustering model with Lotka–Volterra competition. The model takes the advective flux to depend directly upon local population densities without requiring intermediate signals like attractants or repellents to form the aggregation so as to increase the chances of survival of individuals like human populations forming small nucleated settlements. By imposing appropriate boundary conditions, we establish the global boundedness of solutions in two-dimensional bounded domains. Moreover, we prove the global stability of spatially homogeneous steady states under appropriate conditions on system parameters, and show that the rate of convergence to the coexistence steady state is exponential while the rate of convergence to the competitive exclusion steady state is algebraic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信