{"title":"带有倾斜广义半平面谐波映射的布拉什克积和卷积","authors":"Stacey Muir","doi":"10.1007/s11785-024-01508-2","DOIUrl":null,"url":null,"abstract":"<p>It is known that if the convolution of two suitably normalized planar harmonic mappings from certain families of mappings, such as those mapping into a half-plane or a strip, is locally univalent, the convolution is univalent and convex in one direction. After extending this to convolutions of mappings into a slanted half-plane with those into a slanted asymmetric strip, we prove properties for the dilatation of the convolution of a mapping from a family of slanted generalized right half-plane mappings with mappings into a slanted half-plane or a slanted asymmetric strip with a finite Blaschke product dilatation. The properties lay the foundation for a direct application of polynomial zero distribution techniques in the determination of local univalence of such convolutions. We conclude by producing a family of univalent convolutions convex in one direction between a slanted generalized right half-plane mapping and a mapping into a half-plane with a two-factor Blaschke product dilatation.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"206 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blaschke Products and Convolutions with a Slanted Generalized Half-Plane Harmonic Mapping\",\"authors\":\"Stacey Muir\",\"doi\":\"10.1007/s11785-024-01508-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that if the convolution of two suitably normalized planar harmonic mappings from certain families of mappings, such as those mapping into a half-plane or a strip, is locally univalent, the convolution is univalent and convex in one direction. After extending this to convolutions of mappings into a slanted half-plane with those into a slanted asymmetric strip, we prove properties for the dilatation of the convolution of a mapping from a family of slanted generalized right half-plane mappings with mappings into a slanted half-plane or a slanted asymmetric strip with a finite Blaschke product dilatation. The properties lay the foundation for a direct application of polynomial zero distribution techniques in the determination of local univalence of such convolutions. We conclude by producing a family of univalent convolutions convex in one direction between a slanted generalized right half-plane mapping and a mapping into a half-plane with a two-factor Blaschke product dilatation.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"206 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01508-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01508-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Blaschke Products and Convolutions with a Slanted Generalized Half-Plane Harmonic Mapping
It is known that if the convolution of two suitably normalized planar harmonic mappings from certain families of mappings, such as those mapping into a half-plane or a strip, is locally univalent, the convolution is univalent and convex in one direction. After extending this to convolutions of mappings into a slanted half-plane with those into a slanted asymmetric strip, we prove properties for the dilatation of the convolution of a mapping from a family of slanted generalized right half-plane mappings with mappings into a slanted half-plane or a slanted asymmetric strip with a finite Blaschke product dilatation. The properties lay the foundation for a direct application of polynomial zero distribution techniques in the determination of local univalence of such convolutions. We conclude by producing a family of univalent convolutions convex in one direction between a slanted generalized right half-plane mapping and a mapping into a half-plane with a two-factor Blaschke product dilatation.
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.