{"title":"最小图增长的下限","authors":"Allen Weitsman","doi":"10.1007/s40315-024-00532-9","DOIUrl":null,"url":null,"abstract":"<p>We show that for minimal graphs in <span>\\(R^3\\)</span> having 0 boundary values over simpy connected domains, the maximum over circles of radius r must be at least of the order <span>\\(r^{1/2}\\)</span>.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"81 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lower Bound on the Growth of Minimal Graphs\",\"authors\":\"Allen Weitsman\",\"doi\":\"10.1007/s40315-024-00532-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that for minimal graphs in <span>\\\\(R^3\\\\)</span> having 0 boundary values over simpy connected domains, the maximum over circles of radius r must be at least of the order <span>\\\\(r^{1/2}\\\\)</span>.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00532-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00532-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于在简单连通域上边界值为 0 的 \(R^3\) 中的最小图,半径为 r 的圆上的最大值必须至少是 \(r^{1/2}\) 的数量级。
We show that for minimal graphs in \(R^3\) having 0 boundary values over simpy connected domains, the maximum over circles of radius r must be at least of the order \(r^{1/2}\).
期刊介绍:
CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.