无穷维度中的 Loewner PDE

Pub Date : 2024-04-12 DOI:10.1007/s40315-024-00536-5
Ian Graham, Hidetaka Hamada, Gabriela Kohr, Mirela Kohr
{"title":"无穷维度中的 Loewner PDE","authors":"Ian Graham, Hidetaka Hamada, Gabriela Kohr, Mirela Kohr","doi":"10.1007/s40315-024-00536-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove the existence and uniqueness of the solution <i>f</i>(<i>z</i>, <i>t</i>) of the Loewner PDE with normalization <span>\\(Df(0,t)=e^{tA}\\)</span>, where <span>\\(A\\in L(X,X)\\)</span> is such that <span>\\(k_+(A)&lt;2m(A)\\)</span>, on the unit ball of a separable reflexive complex Banach space <i>X</i>. In particular, we obtain the biholomorphicity of the univalent Schwarz mappings <i>v</i>(<i>z</i>, <i>s</i>, <i>t</i>) with normalization <span>\\(Dv(0,s,t)=e^{-(t-s)A}\\)</span> for <span>\\(t\\ge s\\ge 0\\)</span>, where <span>\\(m(A)&gt;0\\)</span>, which satisfy the semigroup property on the unit ball of a complex Banach space <i>X</i>. We further obtain the biholomorphicity of <i>A</i>-normalized univalent subordination chains under some normality condition on the unit ball of a reflexive complex Banach space <i>X</i>. We prove the existence of the biholomorphic solutions <i>f</i>(<i>z</i>, <i>t</i>) of the Loewner PDE with normalization <span>\\(Df(0,t)=e^{tA}\\)</span> on the unit ball of a separable reflexive complex Banach space <i>X</i>. The results obtained in this paper give some positive answers to the open problems and conjectures proposed by the authors in 2013.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loewner PDE in Infinite Dimensions\",\"authors\":\"Ian Graham, Hidetaka Hamada, Gabriela Kohr, Mirela Kohr\",\"doi\":\"10.1007/s40315-024-00536-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove the existence and uniqueness of the solution <i>f</i>(<i>z</i>, <i>t</i>) of the Loewner PDE with normalization <span>\\\\(Df(0,t)=e^{tA}\\\\)</span>, where <span>\\\\(A\\\\in L(X,X)\\\\)</span> is such that <span>\\\\(k_+(A)&lt;2m(A)\\\\)</span>, on the unit ball of a separable reflexive complex Banach space <i>X</i>. In particular, we obtain the biholomorphicity of the univalent Schwarz mappings <i>v</i>(<i>z</i>, <i>s</i>, <i>t</i>) with normalization <span>\\\\(Dv(0,s,t)=e^{-(t-s)A}\\\\)</span> for <span>\\\\(t\\\\ge s\\\\ge 0\\\\)</span>, where <span>\\\\(m(A)&gt;0\\\\)</span>, which satisfy the semigroup property on the unit ball of a complex Banach space <i>X</i>. We further obtain the biholomorphicity of <i>A</i>-normalized univalent subordination chains under some normality condition on the unit ball of a reflexive complex Banach space <i>X</i>. We prove the existence of the biholomorphic solutions <i>f</i>(<i>z</i>, <i>t</i>) of the Loewner PDE with normalization <span>\\\\(Df(0,t)=e^{tA}\\\\)</span> on the unit ball of a separable reflexive complex Banach space <i>X</i>. The results obtained in this paper give some positive answers to the open problems and conjectures proposed by the authors in 2013.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00536-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00536-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了在可分离的反射复巴纳赫空间 X 的单位球上,具有归一化 \(Df(0,t)=e^{tA}\) 的 Loewner PDE 的解 f(z, t) 的存在性和唯一性,其中 \(A\in L(X,X)\) 是这样的 \(k_+(A)<2m(A)\) 。特别地,我们得到了单等价施瓦茨映射 v(z,s,t)在复巴纳赫空间 X 的单位球上满足半群性质的归一化 \(Dv(0,s,t)=e^{-(t-s)A}\) for \(t\ge s\ge 0\), where \(m(A)>0\) 的双全非性。我们进一步得到了在可分离的反身复巴纳赫空间 X 的单位球上,在一些规范性条件下 A 规范化的单价隶属链的双全态性。我们证明了在可分离的反身复巴纳赫空间 X 的单位球上,具有规范化 \(Df(0,t)=e^{tA}\) 的 Loewner PDE 的双全态解 f(z, t) 的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Loewner PDE in Infinite Dimensions

In this paper, we prove the existence and uniqueness of the solution f(zt) of the Loewner PDE with normalization \(Df(0,t)=e^{tA}\), where \(A\in L(X,X)\) is such that \(k_+(A)<2m(A)\), on the unit ball of a separable reflexive complex Banach space X. In particular, we obtain the biholomorphicity of the univalent Schwarz mappings v(zst) with normalization \(Dv(0,s,t)=e^{-(t-s)A}\) for \(t\ge s\ge 0\), where \(m(A)>0\), which satisfy the semigroup property on the unit ball of a complex Banach space X. We further obtain the biholomorphicity of A-normalized univalent subordination chains under some normality condition on the unit ball of a reflexive complex Banach space X. We prove the existence of the biholomorphic solutions f(zt) of the Loewner PDE with normalization \(Df(0,t)=e^{tA}\) on the unit ball of a separable reflexive complex Banach space X. The results obtained in this paper give some positive answers to the open problems and conjectures proposed by the authors in 2013.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信