{"title":"双曲结和链接的某些无穷序列上的异常 Dehn 手术","authors":"Alberto Cavicchioli, Fulvia Spaggiari","doi":"10.1007/s00009-024-02633-0","DOIUrl":null,"url":null,"abstract":"<p>We study closed connected orientable 3-manifolds obtained by Dehn surgery along the oriented components of a link, introduced and considered by Motegi and Song (2005) and Ichihara et al. (2008). For such manifolds, we find a finite balanced group presentation of the fundamental group and describe exceptional surgeries. This allows us to construct an infinite family of tunnel number one strongly invertible hyperbolic knots with three parameters, which admit toroidal surgeries and Seifert fibered surgeries. Among the obtained results, we mention that for every integer <span>\\(n >5\\)</span> there are infinitely many hyperbolic knots in the 3–sphere, whose <span>\\((n-2)\\)</span> and <span>\\((n+1)\\)</span>-surgeries are toroidal, and <span>\\((n-1)\\)</span> and <i>n</i>-surgeries are Seifert fibered.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exceptional Dehn Surgeries on Some Infinite Series of Hyperbolic Knots and Links\",\"authors\":\"Alberto Cavicchioli, Fulvia Spaggiari\",\"doi\":\"10.1007/s00009-024-02633-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study closed connected orientable 3-manifolds obtained by Dehn surgery along the oriented components of a link, introduced and considered by Motegi and Song (2005) and Ichihara et al. (2008). For such manifolds, we find a finite balanced group presentation of the fundamental group and describe exceptional surgeries. This allows us to construct an infinite family of tunnel number one strongly invertible hyperbolic knots with three parameters, which admit toroidal surgeries and Seifert fibered surgeries. Among the obtained results, we mention that for every integer <span>\\\\(n >5\\\\)</span> there are infinitely many hyperbolic knots in the 3–sphere, whose <span>\\\\((n-2)\\\\)</span> and <span>\\\\((n+1)\\\\)</span>-surgeries are toroidal, and <span>\\\\((n-1)\\\\)</span> and <i>n</i>-surgeries are Seifert fibered.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02633-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02633-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exceptional Dehn Surgeries on Some Infinite Series of Hyperbolic Knots and Links
We study closed connected orientable 3-manifolds obtained by Dehn surgery along the oriented components of a link, introduced and considered by Motegi and Song (2005) and Ichihara et al. (2008). For such manifolds, we find a finite balanced group presentation of the fundamental group and describe exceptional surgeries. This allows us to construct an infinite family of tunnel number one strongly invertible hyperbolic knots with three parameters, which admit toroidal surgeries and Seifert fibered surgeries. Among the obtained results, we mention that for every integer \(n >5\) there are infinitely many hyperbolic knots in the 3–sphere, whose \((n-2)\) and \((n+1)\)-surgeries are toroidal, and \((n-1)\) and n-surgeries are Seifert fibered.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.