具有乘法连接徘徊域的超越全函数的 Julia 分量

IF 0.6 4区 数学 Q3 MATHEMATICS
{"title":"具有乘法连接徘徊域的超越全函数的 Julia 分量","authors":"","doi":"10.1007/s40315-024-00521-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We investigate some topological properties of Julia components, that is, connected components of the Julia set, of a transcendental entire function <em>f</em> with a multiply-connected wandering domain. If <em>C</em> is a Julia component with a bounded orbit, then we show that there exists a polynomial <em>P</em> such that <em>C</em> is homeomorphic to a Julia component of the Julia set of <em>P</em>. Furthermore if <em>C</em> is wandering, then <em>C</em> is a buried singleton component. Also we show that under some dynamical conditions, every such <em>C</em> is full and a buried component. The key for our proof is to show that some iterate of <em>f</em> can be regarded as a polynomial-like map on a suitable arbitrarily large bounded topological disk. As an application of this result, we show that a transcendental entire function having a wandering domain with a bounded orbit cannot have multiply-connected wandering domains.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"82 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Julia Components of Transcendental Entire Functions with Multiply-Connected Wandering Domains\",\"authors\":\"\",\"doi\":\"10.1007/s40315-024-00521-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We investigate some topological properties of Julia components, that is, connected components of the Julia set, of a transcendental entire function <em>f</em> with a multiply-connected wandering domain. If <em>C</em> is a Julia component with a bounded orbit, then we show that there exists a polynomial <em>P</em> such that <em>C</em> is homeomorphic to a Julia component of the Julia set of <em>P</em>. Furthermore if <em>C</em> is wandering, then <em>C</em> is a buried singleton component. Also we show that under some dynamical conditions, every such <em>C</em> is full and a buried component. The key for our proof is to show that some iterate of <em>f</em> can be regarded as a polynomial-like map on a suitable arbitrarily large bounded topological disk. As an application of this result, we show that a transcendental entire function having a wandering domain with a bounded orbit cannot have multiply-connected wandering domains.</p>\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-024-00521-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00521-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们研究了具有多重连接游走域的超越全函数 f 的 Julia 分量(即 Julia 集的连接分量)的一些拓扑性质。如果 C 是一个有界轨道的 Julia 分量,那么我们证明存在一个多项式 P,使得 C 与 P 的 Julia 集的 Julia 分量同构。我们还证明,在某些动力学条件下,每个这样的 C 都是完整的,并且是一个埋没的分量。我们证明的关键在于证明 f 的某些迭代可以被视为任意大的有界拓扑盘上的多项式类映射。作为这一结果的应用,我们证明了具有有界轨道徘徊域的超越全函数不可能具有多重连接的徘徊域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Julia Components of Transcendental Entire Functions with Multiply-Connected Wandering Domains

Abstract

We investigate some topological properties of Julia components, that is, connected components of the Julia set, of a transcendental entire function f with a multiply-connected wandering domain. If C is a Julia component with a bounded orbit, then we show that there exists a polynomial P such that C is homeomorphic to a Julia component of the Julia set of P. Furthermore if C is wandering, then C is a buried singleton component. Also we show that under some dynamical conditions, every such C is full and a buried component. The key for our proof is to show that some iterate of f can be regarded as a polynomial-like map on a suitable arbitrarily large bounded topological disk. As an application of this result, we show that a transcendental entire function having a wandering domain with a bounded orbit cannot have multiply-connected wandering domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信