Leandro H. Danes, Guilherme D. Avansi, Denis J. Schiozer
{"title":"开发和校准石油生产管理策略应用优化技术的方法","authors":"Leandro H. Danes, Guilherme D. Avansi, Denis J. Schiozer","doi":"10.1007/s10596-024-10282-1","DOIUrl":null,"url":null,"abstract":"<p>The hydrocarbon extraction process is complex and involves numerous design variables and mitigating risk. Numerous time-consuming simulations are required to maximize objective functions such as NPV from a particular field while contemplating a significant representation of uncertainty scenarios and various production strategies. Production strategies searches may result in a high-dimensional search space which can yield sub-optimal reservoir economical exploration. As a solution, appropriate optimization algorithms selection and tuning may provide good solutions with lesser simulations. This paper presents a methodology to calibrate, develop, and select optimization algorithms for oil production strategy applications while quantifying the dimension and optimum location effects. Global optimum location altered the best method to be selected. It presents a novel algorithm (ASLHC) and a modification of the Nelder-Mead method (NMNS) to improve its high dimensionality performance. Performances of six pre-calibrated techniques were compared using novel normalized mathematical functions. Optimizations were limited to a 500 evaluation functions computational budget. The PSO, ASLHC, NMNS, and IDLHC were selected and implemented to perform production strategy improvements regarding two parameterizations of the reservoir management variables for a real reservoir model with restricted platform. Results showed the implemented algorithms successfully improved NPV by at least 8% at each of the 24 real-case optimizations. After upscaling the selected techniques for a 115 variable parameterization, the NMNS and IDLHC demonstrated good resilience against local convergence and each technique kept improving during all iterations of the process. An optimization method recommendation chart is presented based on the computational budget of the application.</p>","PeriodicalId":10662,"journal":{"name":"Computational Geosciences","volume":"39 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for developing and calibrating optimization techniques for oil production management strategy applications\",\"authors\":\"Leandro H. Danes, Guilherme D. Avansi, Denis J. Schiozer\",\"doi\":\"10.1007/s10596-024-10282-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hydrocarbon extraction process is complex and involves numerous design variables and mitigating risk. Numerous time-consuming simulations are required to maximize objective functions such as NPV from a particular field while contemplating a significant representation of uncertainty scenarios and various production strategies. Production strategies searches may result in a high-dimensional search space which can yield sub-optimal reservoir economical exploration. As a solution, appropriate optimization algorithms selection and tuning may provide good solutions with lesser simulations. This paper presents a methodology to calibrate, develop, and select optimization algorithms for oil production strategy applications while quantifying the dimension and optimum location effects. Global optimum location altered the best method to be selected. It presents a novel algorithm (ASLHC) and a modification of the Nelder-Mead method (NMNS) to improve its high dimensionality performance. Performances of six pre-calibrated techniques were compared using novel normalized mathematical functions. Optimizations were limited to a 500 evaluation functions computational budget. The PSO, ASLHC, NMNS, and IDLHC were selected and implemented to perform production strategy improvements regarding two parameterizations of the reservoir management variables for a real reservoir model with restricted platform. Results showed the implemented algorithms successfully improved NPV by at least 8% at each of the 24 real-case optimizations. After upscaling the selected techniques for a 115 variable parameterization, the NMNS and IDLHC demonstrated good resilience against local convergence and each technique kept improving during all iterations of the process. An optimization method recommendation chart is presented based on the computational budget of the application.</p>\",\"PeriodicalId\":10662,\"journal\":{\"name\":\"Computational Geosciences\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10596-024-10282-1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10596-024-10282-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A method for developing and calibrating optimization techniques for oil production management strategy applications
The hydrocarbon extraction process is complex and involves numerous design variables and mitigating risk. Numerous time-consuming simulations are required to maximize objective functions such as NPV from a particular field while contemplating a significant representation of uncertainty scenarios and various production strategies. Production strategies searches may result in a high-dimensional search space which can yield sub-optimal reservoir economical exploration. As a solution, appropriate optimization algorithms selection and tuning may provide good solutions with lesser simulations. This paper presents a methodology to calibrate, develop, and select optimization algorithms for oil production strategy applications while quantifying the dimension and optimum location effects. Global optimum location altered the best method to be selected. It presents a novel algorithm (ASLHC) and a modification of the Nelder-Mead method (NMNS) to improve its high dimensionality performance. Performances of six pre-calibrated techniques were compared using novel normalized mathematical functions. Optimizations were limited to a 500 evaluation functions computational budget. The PSO, ASLHC, NMNS, and IDLHC were selected and implemented to perform production strategy improvements regarding two parameterizations of the reservoir management variables for a real reservoir model with restricted platform. Results showed the implemented algorithms successfully improved NPV by at least 8% at each of the 24 real-case optimizations. After upscaling the selected techniques for a 115 variable parameterization, the NMNS and IDLHC demonstrated good resilience against local convergence and each technique kept improving during all iterations of the process. An optimization method recommendation chart is presented based on the computational budget of the application.
期刊介绍:
Computational Geosciences publishes high quality papers on mathematical modeling, simulation, numerical analysis, and other computational aspects of the geosciences. In particular the journal is focused on advanced numerical methods for the simulation of subsurface flow and transport, and associated aspects such as discretization, gridding, upscaling, optimization, data assimilation, uncertainty assessment, and high performance parallel and grid computing.
Papers treating similar topics but with applications to other fields in the geosciences, such as geomechanics, geophysics, oceanography, or meteorology, will also be considered.
The journal provides a platform for interaction and multidisciplinary collaboration among diverse scientific groups, from both academia and industry, which share an interest in developing mathematical models and efficient algorithms for solving them, such as mathematicians, engineers, chemists, physicists, and geoscientists.